The frequency of novel mutations (46.15%) is similar to what has been reported elsewhere. The use of bioinformatic tools showed differences in enzyme-substrate interactions. Studies with larger groups of patients are needed.
Mucopolysaccharidosis type III, or Sanfilippo syndrome, is an autosomal recessive disorder characterized by impairment in the degradation of Heparan sulfate. Here the authors describe the natural history of 5 related individuals; all associated through a large pedigree which reports a total of 11 affected members, originally from the Boyacá region in Colombia, diagnosed with MPS IIIC who all harbor a novel mutation in HGSNAT. The authors report an unusually high incidence of the disease in this population. The clinical features are similar to previously described patients, although some differences in the degree of severity and end-stage of the disease are seen in this specific group. The authors consider that the high degree of endogamy in this specific population could underlie modifying factors for the severity of presentation in these patients. Future studies might provide more information on the functional effect of this novel mutation, which could define this group as a genetic isolate.
Mucopolysaccharidosis type I (MPSI) is a rare autosomal recessive disorder caused by mutations in the gene encoding the lysosomal enzyme α-l-iduronidase (IDUA), which is instrumental in the hydrolysis of the glycosaminoglycans, dermatan and heparan sulfate. The accumulation of unhydrolyzed glycosaminoglycans leads to pathogenesis in multiple tissue types, especially those of skeletal, nervous, respiratory, cardiovascular, and gastrointestinal origin.Although molecular diagnostic tools for MPSI have been available since the identification and characterization of the IDUA gene in 1992, Colombia, Ecuador, and Peru have lacked such methodologies. Therefore, the mutational profile of the IDUA gene in these countries has largely been unknown. The goal of this study was to characterize genotypes in 14 patients with MPSI from Colombia, Ecuador, and Peru.The most common mutation found at a frequency of 42.8% was W402X. Six patients presented with seven novel mutations, a high novel mutational rate in this population (32%). These novel mutations were validated using bioinformatic techniques. A model of the IDUA protein resulting from three of the novel missense mutations (Y625C, P385L, R621L) revealed that these mutations alter accessible surface area values, thereby reducing the accessibility of the enzyme to its substrates.This is the first characterization of the mutational profile of the IDUA gene in patients with MPSI in Colombia, Ecuador, and Peru. The findings contribute to our understanding of IDUA gene expression and IDUA enzyme function, and may help facilitate early and improved diagnosis and management for patients with MPSI.
Background: Mutations of GDAP1 gene cause autosomal dominant and autosomal recessive Charcot-Marie-Tooth disease and more than 40 different mutations have been reported. The recessive Q163X mutation has been described in patients of Spanish ancestry, and a founder mutation in South American patients, originating in Spain has been demonstrated.
Objective: We describe physical and histological features, and the molecular impact of mutation Q163X in a Colombian family.
Methods: We report two female patients, daughters of consanguineous parents, with onset of symptoms within the first two years of life, developing severe functional impairment, without evidence of dysmorphic features, hoarseness or diaphragmatic paralysis. Electrophysiology tests showed a sensory and motor neuropathy with axonal pattern. Sequencing of GDAP1 gene was requested and the study identified a homozygous point mutation (c.487 C>T) in exon 4, resulting in a premature stop codon (p.Q163X). This result confirms the diagnosis of Charcot-Marie-Tooth disease, type 4A.
Results: The patients were referred to Physical Medicine and Rehabilitation service, in order to be evaluated for ambulation assistance. They have been followed by Pulmonology service, for pulmonary function assessment and diaphragmatic paralysis evaluation. Genetic counseling was offered. The study of the genealogy of the patient, phenotypic features, and electrophysiological findings must be included as valuable tools in the clinical approach of the patient with Charcot-Marie-Tooth disease, in order to define a causative mutation. In patients of South American origin, the presence of GDAP1 gene mutations should be considered, especially the Q163X mutation, as the cause of CMT4A disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.