Rationale Evidence suggests that glutamate transporter 1 (GLT-1) and cystine/glutamate exchanger transporter (xCT) are critical in maintaining glutamate homeostasis. We have recently demonstrated that ceftriaxone treatment induced up-regulation of GLT1 levels and attenuated ethanol intake; however, less is known about the involvement of xCT on ethanol intake. In this study, we investigated the effects of ceftriaxone on the levels of xCT in both continuous and relapse-like ethanol drinking, as well as GLT-1 isoforms, and glutamate aspartate transporter (GLAST) in relapse-like ethanol intake. Methods P rats received free choice of 15 and 30 % ethanol and water for 5 weeks and then deprived of ethanol for 2 weeks. Rats were treated with ceftriaxone (100 mg/kg, i.p.) or saline during the last 5 days of the 2-week deprivation period. After deprivation period, P rats were re-exposed to free choice of 15 and 30 % ethanol and water for nine consecutive days. A second group of P rats was given continuous ethanol access for 5 weeks, then ceftriaxone (100 mg/kg, i.p.) or saline throughout the week 6. Results Ceftriaxone significantly attenuated relapse-like ethanol intake. Importantly, this effect of ceftriaxone was associated in part with upregulation of the levels of GLT-1a and GLT-1b isoforms and xCT in the prefrontal cortex (PFC) and the nucleus accumbens (NAc). There were no significant differences in GLAST expression among all groups. We also found that ceftriaxone treatment increased xCT levels in both PFC and NAc in continuous ethanol intake. Conclusion These findings suggest that xCT and GLT-1 isoforms might be target proteins for the treatment of alcohol dependence.
We have recently shown that upregulation of glutamate transporter 1 (GLT1) in the brain is associated in part with reduction in ethanol intake in alcohol-preferring (P) male rats. In this study, we investigated the effects of a synthetic compound, (R)-(−)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), known to activate GLT1 on ethanol consumption as well as GLT1 expression and certain signaling pathways in P rats. P rats were given 24-h concurrent access to 15 and 30% ethanol, water and food for 5 weeks. On week 6, P rats received MS-153 at a dose of 50 mg/kg (i.p.) or a vehicle (i.p.) for 5 consecutive days. We also tested the effect of MS-153 on daily sucrose (10%) intake. Our studies revealed a significant decrease in ethanol intake at the dose of 50 mg/kg MS-153 from Day 1 through 14. In addition, MS-153 at dose of 50 mg/kg did not induce any significant effect on sucrose intake. Importantly, we found that MS-153 upregulated the GLT1 level in the nucleus accumbens (NAc) but not in the prefrontal cortex (PFC). In accordance, we found upregulation of nuclear NFkB-65 level in NAc in MS-153-treated group, however, IkBα was downregulated in MS-153-treated group in NAc. We did not find any changes in NFkB-65 and IkBα levels in PFC. Interestingly, we revealed that p-Akt was downregulated in ethanol vehicle treated groups in the NAc; this downregulation was reversed by MS-153 treatment. We did not observe any significant differences in glutamate aspartate transporter (GLAST) expression among all groups. These findings reveal MS-153 as a GLT1 modulator that may have potential as a therapeutic drug for the treatment of alcohol dependence.
Alcohol consumption is largely associated with alterations in the extracellular glutamate concentrations in several brain reward regions. We have recently found that glutamate transporter 1 (GLT-1) is downregulated following chronic exposure to ethanol for five weeks in alcohol-preferring rats, and upregulation of the GLT-1 levels in nucleus accumbens and prefrontal cortex resulted, in part, in attenuating ethanol consumption. Cysteine glutamate antiporter (xCT) was also found to be downregulated after chronic ethanol exposure in P rats, and its upregulation could be valuable in attenuating ethanol drinking. In this study, we examined the effect of a synthetic compound, (R)-(−)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), on ethanol drinking and expression of GLT-1 and xCT in the amygdala and hippocampus of P rats. P rats were exposed to continuous free-choice access to water, 15% and 30% ethanol, and food for five weeks, and then after which they received treatments of MS-153 or vehicle for five days. The results showed that MS-153 treatment significantly reduced ethanol consumption in P rats. It was revealed that GLT-1 and xCT expressions were downregulated in both the amygdala and hippocampus of ethanol-vehicle treated rats (ethanol vehicle group) as compared to water control animals. Importantly, MS-153 treatment upregulated GLT-1 and xCT expression in these brain regions. These findings provide important role of MS-153 on these glutamate transporters for the attenuation of ethanol drinking behavior.
While health effects of conventional tobacco are well defined, data on vaping devices, including one of the most popular e-cigarettes which have high nicotine levels, are less established. Prior acute e-cigarette studies have demonstrated inflammatory and cardiopulmonary physiology changes while chronic studies have demonstrated extra-pulmonary effects, including neurotransmitter alterations in reward pathways. In this study we investigated the impact of inhalation of aerosols produced from pod-based, flavored e-cigarettes (JUUL) aerosols three times daily for 3 months on inflammatory markers in the brain, lung, heart, and colon. JUUL aerosol exposure induced upregulation of cytokine and chemokine gene expression and increased HMGB1 and RAGE in the nucleus accumbens in the central nervous system. Inflammatory gene expression increased in the colon, while gene expression was more broadly altered by e-cigarette aerosol inhalation in the lung. Cardiopulmonary inflammatory responses to acute lung injury with lipopolysaccharide were exacerbated in the heart. Flavor-specific findings were detected across these studies. Our findings suggest that daily e-cigarette use may cause neuroinflammation, which may contribute to behavioral changes and mood disorders. In addition, e-cigarette use may cause gut inflammation, which has been tied to poor systemic health, and cardiac inflammation, which leads to cardiovascular disease.
Accumulated evidence has focused on the use of natural polyphenolic compounds as nutraceuticals since they showed a wide range of bioactivities and exhibited protection against variety of age-related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as anion transporting polypeptide-binding cassette transporters like multidrug resistance protein and p-glycoprotein. Some of the efflux transporters are, generally, linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. In addition, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.