Phytase can be used in animal's diets to increase the absorption of several divalent ions, amino acids and proteins and to decrease the excessive phosphorus release in manure to prevent negative effects on the environment. This study aimed to enhance the current submerged fungal phytase productions with a novel fermentation technique by evaluating the effect of the various microparticles on Aspergillus ficuum phytase production. It was observed that microparticles prevented bulk fungal pellet growth, decreased average fungal pellet size and significantly increased phytase activity in the submerged fermentation. Microbial structure imaging results showed that the average fungal pellet radius decreased from 800 to 500 and 200 µm by addition of 15 g/L aluminum oxide and talcum, respectively, in shake-flask fermentation. Also, addition of 15 g/L of talcum and aluminum oxide increased phytase activity to 2.01 and 2.93 U/ml, respectively, compared to control (1.02 U/ml) in shake-flask fermentation. Additionally, phytase activity reached 6.49 U/ml within 96 h of fermentation with the addition of 15 g/L of talcum, whereas the maximum phytase activity was only 3.45 U/ml at 120 h of fermentation for the control in the 1-L working volume bioreactors. In conclusion, microparticles significantly increased fungal phytase activity and production yield compared to control fermentation.
Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide homogenized fermentation broth to increase uniformity and the prediction performance of the models. Therefore, in this study, addition of aluminum oxide and talcum microparticles into fermentations was evaluated to enhance the production of lactic acid by Rhizopus oryzae. The results showed that the bulk fungal growth was prevented and the lactic acid concentration increased from 6.02 to 13.88 and 24.01 g/L, when 15 g/L of aluminum oxide or 10 g/L of talcum was used, respectively, in the shake-flask fermentations. Additionally, substrate concentration, pH, and agitation were optimized in the bioreactors using response surface methodology, and optimum values were determined as 126 g/L of glucose, 6.22 pH, and 387 rpm, respectively. Under these conditions, lactic acid production further increased to 75.1 ± 1.5 g/L with 10 g/L of talcum addition. Also, lactic acid production and glucose consumption in the batch fermentation were successfully modeled with modified Gompertz model and modified logistic model. RMSE and MAE values for lactic acid production were calculated as 2.279 and 1.498 for the modified Gompertz model; 3.6 and 4.056 for the modified logistic model. Additionally, modified logistic model predicted glucose consumption with -2.088 MAE and 2.868 RMSE, whereas these values were calculated as 2.035 and 3.946 for the modified Gompertz model.
Phytase (myo-inositol-hexakisphosphate phosphohydrolase) is an enzyme, which breaks down phytate to inositol and orthophosphoric acid. Phytase has been used as feed additive, and in some medical applications for years. To date, phytase production has been usually performed as a solid-state fermentation with small production volumes. Therefore, the aim of this study was to increase the phytase activity in submerged fermentations by screening several microorganism strains based on the literature to select the most productive phytase producer and optimizing growth parameters such as temperature, pH, and aeration level using response surface methodology (RSM). As a result, among the four different microorganisms evaluated, Aspergillus ficuum (NRRL 3135) was selected as the most productive strain. Optimum temperature, pH, and aeration values were determined as 33 °C, 4.5, and 0.9 vvm, respectively, for A. ficuum in 2-l batch submerged phytase productions. Under these conditions, phytase activity was measured as 2.27 U/ml. Therefore, this is a unique study showing the production of phytase with A. ficuum successfully in submerged fermentation as opposed to the traditional solid-state fermentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.