The epidermal growth factor receptor (EGFR, HER1) is a therapeutic target in head and neck squamous cell carcinoma (HNSCC). After initial promising results with EGFR‐targeted therapies such as cetuximab, therapeutic resistance has become a major clinical problem, and new treatment options are therefore necessary. Moreover, the relationship between HER receptors, anti‐EGFR therapies, and the human papillomavirus (HPV) status in HNSCC is not fully understood. In contrast to first‐generation EGFR inhibitors, afatinib irreversibly inhibits multiple HER receptors simultaneously. Therefore, treatment with afatinib might result in a more pronounced therapeutic benefit, even in patients experiencing cetuximab resistance. In this study, the cytotoxic effect of afatinib as single agent and in combination with cisplatin was investigated in cetuximab‐sensitive, intrinsically cetuximab‐resistant, and acquired cetuximab‐resistant HNSCC cell lines with different HPV status under normoxia and hypoxia. Furthermore, the influence of cetuximab resistance, HPV, and hypoxia on the expression of HER receptors was investigated. Our results demonstrated that afatinib was able to establish cytotoxicity in cetuximab‐sensitive, intrinsically cetuximab‐resistant, and acquired cetuximab‐resistant HNSCC cell lines, independent of the HPV status. However, cross‐resistance between cetuximab and afatinib might be possible. Treatment with afatinib caused a G0/G1 cell cycle arrest as well as induction of apoptotic cell death. Additive to antagonistic interactions between afatinib and cisplatin could be observed. Neither cetuximab resistance nor HPV status significantly influenced the expression of HER receptors in HNSCC cell lines. In contrast, the expression of EGFR, HER2, and HER3 was significantly altered under hypoxia. Oxygen deficiency is a common characteristic of HNSCC tumors, and these hypoxic tumor regions often contain cells that are more resistant to treatment. However, we observed that afatinib maintained its cytotoxic effect under hypoxia. In conclusion, our preclinical data support the hypothesis that afatinib might be a promising therapeutic strategy to treat patients with HNSCC experiencing intrinsic or acquired cetuximab resistance.
Resistance to therapies targeting the epidermal growth factor receptor (EGFR), such as cetuximab, remains a major roadblock in the search for effective therapeutic strategies in head and neck squamous cell carcinoma (HNSCC). Due to its close interaction with the EGFR pathway, redundant or compensatory activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been proposed as a major driver of resistance to EGFR inhibitors. Understanding the role of each of the main proteins involved in this pathway is utterly important to develop rational combination strategies able to circumvent resistance. Therefore, the current work reviewed the role of PI3K/Akt pathway proteins, including Ras, PI3K, tumor suppressor phosphatase and tensing homolog, Akt and mammalian target of rapamycin in resistance to anti-EGFR treatment in HNSCC. In addition, we summarize PI3K/Akt pathway inhibitors that are currently under (pre)clinical investigation with focus on overcoming resistance to EGFR inhibitors. In conclusion, genomic alterations in and/or overexpression of one or more of these proteins are common in both human papillomavirus (HPV)-positive and HPV-negative HNSCC Filip Lardon and An Wouters contributed equally to this study.
Background The epidermal growth factor receptor (EGFR) is overexpressed by 80–90% of squamous cell carcinoma of head and neck (HNSCC). In addition to inhibiting EGFR signal transduction, cetuximab, a monoclonal antibody targeting EGFR can also bind to fragment crystallisable domain of immunoglobulins G1 present on natural killer (NK), causing antibody-dependent cellular cytotoxicity (ADCC). However, presence of cetuximab resistance limits effective clinical management of HNSCC. Methods In this study, differences in induction of ADCC were investigated in a panel of ten HNSCC cell lines. Tumour cells were co-cultured with NK cells and monitored using the xCELLigence RTCA. Results While ADCC was not influenced by HPV status, hypoxia and cetuximab resistance did affect ADCC differentially. Intrinsic cetuximab-resistant cell lines showed an increased ADCC induction, whereas exposure to hypoxia reduced ADCC. Baseline EGFR expression was not correlated with ADCC. In contrast, EGFR internalisation following cetuximab treatment was positively correlated with ADCC. Conclusion These findings support the possibility that resistance against cetuximab can be overcome by NK cell-based immune reactions. As such, it provides an incentive to combine cetuximab with immunotherapeutic approaches, thereby possibly enhancing the anti-tumoural immune responses and achieving greater clinical effectiveness of EGFR-targeting agents.
Cetuximab has an established role in the treatment of patients with recurrent/metastatic colorectal cancer and head and neck squamous cell cancer (HNSCC). However, the long-term effectiveness of cetuximab has been limited by the development of acquired resistance, leading to tumor relapse. By contrast, immunotherapies can elicit long-term tumor regression, but the overall response rates are much more limited. In addition to epidermal growth factor (EGFR) inhibition, cetuximab can activate natural killer (NK) cells to induce antibody-dependent cellular cytotoxicity (ADCC). In view of the above, there is an unmet need for the majority of patients that are treated with both monotherapy cetuximab and immunotherapy. Accumulated evidence from (pre-)clinical studies suggests that targeted therapies can have synergistic antitumor effects through combination with immunotherapy. However, further optimizations, aimed towards illuminating the multifaceted interplay, are required to avoid toxicity and to achieve better therapeutic effectiveness. The current review summarizes existing (pre-)clinical evidence to provide a rationale supporting the use of combined cetuximab and immunotherapy approaches in patients with different types of cancer.
Aberrant signaling of the epidermal growth factor receptor (EGFR) plays a crucial role in the tumorigenesis of many cancer types, including head and neck squamous cell carcinoma (HNSCC), making it a compelling drug target. After initial promising results of EGFR-targeted therapies such as cetuximab, the problem of therapeutic resistance is emerging and new treatment options are necessary. In contrast to first-generation EGFR inhibitors, MEHD7945A (duligotuzumab) is a monoclonal antibody with dual EGFR/HER3 specificity. Consequently, treatment with MEHD7945A may result in a more pronounced therapeutic benefit. In this study, sensitivity to MEHD7945A as a single agent and in combination with cisplatin was investigated in cetuximab-sensitive and -resistant HNSCC cell lines under normal and reduced oxygen conditions. The results demonstrated that sensitivity to MEHD7945A was cell line dependent and influenced by oxygen concentration. An additive, but not synergistic, interaction between MEHD7945A and cisplatin was observed. In conclusion, MEHD7945A has the potential to partially overcome cetuximab resistance. Nevertheless, further research is warranted to determine additional resistance mechanisms to cetuximab treatment besides HER3 signaling. Unraveling these mechanisms will ultimately lead to the development of new therapeutic strategies to improve the response to EGFR blockage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.