In this paper, a new voltage-mode all-pass filter topology based on single current operational amplifier (COA) and the implementation of COA by using current conveyors are presented. The proposed topology employs three admittances and single active circuit element. COA implementation by using current conveyor blocks as sub-circuit contributes to workability of the COA employing circuits by using commercially available integrated circuits that can be employed as current conveyor. The validity of the proposed filter is verified by PSPICE simulation programme by using the MOSIS 0.35 micron CMOS process parameters. The simulation results agree well with the theoretical analysis and the circuit achieve a good total harmonic distortion (THD) performance.
This paper introduces a new electronically tuneable third order quadrature oscillator and biquadratic filter with MOS-C realization using all grounded passive components. Voltage-mode second order low-pass, high-pass, band-pass filters using second generation current conveyor and a current/voltage-mode third order quadrature sinusoidal oscillator using multi-output second generation current conveyor are synthesized from the proposed circuit topology. All synthesized circuits are compatible with integration and the center frequency can be electronically tuned by the gate voltage of the MOS transistors. The proposed circuits do not need any component matching condition. Oscillation condition and frequency of oscillation can be independently controlled. Workability of the proposed circuits is validated by PSPICE software using 0.18 micrometer MOSIS CMOS process parameters at ±0.9 V supply voltage. Tuneability of the oscillator is demonstrated for a tested frequency range both in voltage-mode and current-mode operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.