OBJECTIVE: Prediction of diabetic foot ulcer outcome may be helpful for clinicians in optimizing and individualizing management strategy. The aim of the present study was to examine the possibility of predicting the outcome of patients with diabetic foot ulcers by using easily assessed clinical and laboratory parameters at baseline. DESIGN: In this observational study, data were collected prospectively in 670 consecutive diabetic foot ulcer episodes in 510 patients examined between January 1999 and June 2008 and were used to evaluate potential predictors of amputation retrospectively. After exclusion of patients who did not come to the hospital for follow-up for a minimum of six months, data of 574 foot ulcer episodes were evaluated. RESULTS: Limb ischemia, osteomyelitis and presence of gangrene and ulcer depth, determined by the Wagner classification system, were the major independent predictors of overall and major amputations. Older age, presence of coronary artery disease, smoking and ulcer size were found to be associated with either overall or major amputations. Baseline levels of acute phase reactants (white blood cell count, polymorphonuclear leukocyte count, platelet count, erythrocyte sedimentation rate (ESR), serum C-reactive protein (CRP) and albumin) and decreased hemoglobin levels were associated with amputation risk. Multivariate analysis showed that one standard deviation increase in baseline CRP and ESR levels were independent predictors of overall and major amputations, respectively. CONCLUSIONS: The presence of limb ischemia, osteomyelitis, local and diffuse gangrene and ulcer depth were independent predictors of amputation. Baseline levels of ESR and CRP appeared to be helpful for clinicians in predicting amputation.
Hydatid disease of the muscle is very rare and represents approximately 3% of all patients with hydatidosis. Since the infection closely resembles a soft-tissue tumor on clinical examination, the preoperative radiologic diagnosis is very important to avoid biopsy. We report an unusual case of primary intramuscular hydatidosis with its magnetic resonance imaging appearance, clinical and pathological findings.
Biobased extracts comprise various bioactive components and they are widely used in tissue engineering applications to increase bioactivity as well as physical characteristics of biomaterials. Among animal sources, garden snail Helix aspersa has come into prominence with its antibacterial and regenerative extracts and show potential in tissue regeneration. Thus, in this study, bioactive H. aspersa extracts (slime, mucus) were loaded in chitosan (CHI) matrix to fabricate porous scaffolds for hard tissue regeneration. Physical, chemical properties, antimicrobial activity was determined as well as in vitro bioactivity for bone and cartilage regeneration. Mucus and slime incorporation enhanced mechanical properties and biodegradation rate of CHI matrix. Scanning electron microscopy images showed that the average pore size of the scaffolds decreased with higher extract content. Mucus and slime extracts showed antimicrobial effect on two bacterial strains. In vitro cytotoxicity, osteogenic and chondrogenic activity of the scaffolds were evaluated with Saos-2 and SW1353 cell lines in terms of Alkaline phosphatase activity, biomineralization, GAG, COMP and hydroxyproline content. Cell viability results showed that extracts had a proliferative effect on Saos-2 and SW1353 cells when compared to the control group. Mucus and slime extract loading increased osteogenic and chondrogenic activity. Thus, the bioactive extract loaded CHI scaffolds showed potential for bone and cartilage regeneration with enhanced physical properties and in vitro bioactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.