Breeding and geneticsFull-length research article Estimation of heritability and genetic correlations between milk yield and linear type traits in primiparous Holstein-Friesian cows ABSTRACT -Estimation of genetic variability and genetic correlations between production traits (milk yield, fat yield, fat content, protein yield, and protein content) and selected type traits (angularity, fore udder height, rear udder height, front teat placement, teat length, and udder depth) was done using data sets of 10,860 firstcalving Holstein-Friesian cows raised in the territory of the Republic of Serbia. Genetic variance and covariance were obtained using the Restricted Maximum Likelihood (REML) method, VCE v6 software, and the multi-trait mixed model. To enable more precise estimates of values for genetic variances and covariance, a relationship matrix was formed for the individual model (animal model), encompassing 21363 animals. The highest heritability values were obtained for milk yield (0.182), fat yield (0.134), and protein yield (0.170). The lowest heritability estimates were for teat length, front teat placement, rear udder height, and udder depth, all being under 0.110. Genetic correlations between production traits and linear type traits were between −0.131 (fat content and front teat length) and 0.307 (protein yield and fore udder attachment). The largest number of traits shows a positive genetic correlation with the traits of milk yield, which thus indicates possibility of genetic improvements of milk yield in cattle without jeopardizing the type traits or vice versa.
In this study, the authors focused on the evaluation of the genetic parameters of longevity, milk yield traits, and type traits in dairy cattle populations in the Republic of Serbia. The total dataset used consisted of production records and pedigree data for 32,512 Holstein cows that calved from 1981 to 2015. The animal model was applied to determine the variance and covariance components and genetic parameters of the analyzed traits by applying the restricted maximum likelihood (REML) approach and using the programs VCE6 and PEST. The heritability of longevity traits was estimated using the Survival Kit V6.0 software package. Variance and covariance were estimated for five production traits: milk yield (MY), fat yield (FY), protein yield (PY), milk fat content (MC), and protein content (PC), and three longevity traits: length of productive life (LPL), lifetime milk yield (LMY), and the number of lactations achieved (NL) as well as for 18 standard type traits. Heritabilities for the milk, fat, and protein yield traits were 0.20 (MY), 0.15 (FY), and 0.19 (PY), respectively. The estimated coefficients of heritability for the longevity traits were higher when using the Weibull proportional hazards model compared to the traditional linear methods and ranged from 0.08 for NL to 0.10 for LPL. Heritability values for the type traits varied from a low of 0.10 (RLSsv—rear legs set–side view) to medium values of 0.32 (ST-stature). Genetic correlations were found between MY and the following longevity traits: LPL, LMY, and NL with values of −0.18, −0.11, and −0.09, respectively. Genetic correlations were found between MY and a number of linear type traits and varied from 0.02 (between MY and RUH-rear udder height) to 0.28 (between MY and FUA-fore udder attachment). Genetic correlations between the 18 investigated type traits ranged from −0.33 between TL (top line) and RTP (rear teats position) to 0.71 between AN (angularity) and RUH (rear udder height). Genetic correlations between most linear type traits and longevity traits (LPL, LMY, and NL) were generally negative and very low. The highest positive genetic correlation was found between UD and LPL (rxy = 0.38).
Data set including 10860 primiparous Holstein-Friesian breed cows first calved in the period from 2011 to 2015, was used in determining phenotypic variability and correlation between the traits of milk yield and linearly estimated traits of udder and angularity. The average values obtained for type traits (angularity, fore udder attachment, front teats placement, teats length, udder depth and rear udder height) were 6.47; 5.74; 4.96; 5.20; 5.99 and 6.25, respectively. The values obtained for phenotypic correlations between linear type traits and traits of milk yield ranged from -0.042 (udder depth and milk yield) to 0.335 (fore udder attachment and protein yield). Positive phenotypic correlation (0.293) was recorded also between fore udder attachment and milk yield which is deemed the most important trait of milk yield while the lowest correlation between milk yields was determined in relation to udder depth (-0.033). The results obtained indicate a possibility of applying direct and indirect multiple traits selection which should be conducted within a national progeny-testing programme on Holstein-Friesian bulls by using the method of selection indexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.