This experimental study evaluates the durability of recycled aggregate concrete (RAC) containing silica-fume (SF) and natural zeolite (NZ). For this purpose, four levels of recycled coarse concrete aggregates (RCA) were replaced with natural coarse aggregates (NCA). To compare the effect of pozzolans, three levels of SF (5%, 10%, and 15%) and three levels of NZ (10%, 20%, and 30%) were replaced with cement. To evaluate the durability of RAC, 28 mixed designs were made and the following were measured: compressive strength (CS), water absorption by immersion (WA by immersion), water absorption by capillary (WA by capillary), electrical resistance (ER), electrical conductivity (EC) and rapid chloride penetration test (RCPT). The results indicated that WA by immersion and WA by capillary of RAC increased with enhanced RCA incorporation. On the other hand, the pozzolanic reaction of 10% of SF and 10% of NZ decreased capillary pores and structural weakness of full-scale RAC. However, due to the internal chemical changes of RAC, contrary to the WA by immersion and WA by capillary, compared to conventional concrete (CC), a lower EC and unchanged ER values of RC100 containing pozzolans were seen. The scanning electron microscopy (SEM) revealed that compared to NZ, a 10% of SF significantly improved the microstructure of full scale RAC.
The flexural strength of conventional concrete material is known to be enhanced by incorporating a moderate volume-fraction of randomly distributed fibers. However, there is limited information on describing the influence of fiber volume-fraction on the compressive and flexural strength of recycled coarse aggregate concrete (RCA-C) material. This paper reports on experimental test results of the RCA-C material replaced with 0, 30, 50 and 100% recycled aggregate and 0, 0.5, 1 and 1.5% steel fiber volume fraction. Three-point flexural tests of notched prism specimens were completed. The mechanical properties in compression were characterized using cube specimens. Significant improvement in compressive and flexural strength of RCA-C was found as fiber content increased from 0 to 1.5%. The experimental test results of RCA-C were further evaluated to investigate the influence of fiber content on flexural toughness. According to test results, the addition of steel fibers to RCA-C material appreciably increased the flexural toughness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.