Powder metallurgy (PM) is an important production route of alloys and is also important in terms of its properties and economy. This method is suitable for the production of complex and versatile shapes and structures. In this study, it was tried to improve the microstructure and mechanical properties of CuAlNi and CuAlNi-SiC alloys sintered at constant pressing and constant temperature. Composite samples were manufactured by the PM method by supplementing the CuAlNi powder mixture with SiC powders at different weight ratios (2.5%, 5, 7.5 and 10%) at the micron level. Scanning electron microscope (SEM) and optical microscope were used to determine the microstructures of the manufatured samples, and X-Ray Fluorescence (XRF) and X-Ray Diffraction method (XRD) analyzes were used to determine the phases formed in their internal structures. Micro hardness (HV5) was taken to determine the hardness effect. According to the micro structure results, SiC particles were homogeneously dispersed in the structure. Depending on the increasing SiC reinforcement, an increase in hardness values was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.