. Significance: Hyperspectral imaging (HSI) provides rich spectral information for improved histopathological cancer detection. However, acquiring high-resolution HSI data for whole-slide imaging (WSI) can be time-consuming and requires a huge amount of storage space. Aim: WSI using a color camera can be achieved with fast speed, high image resolution, and excellent image quality due to the established techniques. We aim to develop an RGB-guided unsupervised hyperspectral super-resolution reconstruction method that is hypothesized to improve image quality while maintaining the spectral characteristics. Approach: High-resolution hyperspectral images of 32 histologic slides were obtained via automated WSI. High-resolution RGB histology images were registered to the hyperspectral images for RGB guidance. An unsupervised super-resolution network was trained to take the downsampled low-resolution hyperspectral patches (LR-HSI) and high-resolution RGB patches (HR-RGB) as inputs to reconstruct high-resolution hyperspectral patches (HR-HSI). Then, an Inception-based network was trained with the HR-RGB, original HR-HSI, and generated HR-HSI, respectively, for whole-slide histopathological cancer detection. Results: Our super-resolution reconstruction network generated high-resolution hyperspectral images with well-maintained spectral characteristics and improved image quality. Image classification using the original hyperspectral data outperformed RGB because of the extra spectral information. The generated hyperspectral image patches further improved the results. Conclusions: The proposed method potentially reduces image acquisition time, saves storage space without compromising image quality, and improves the image classification performance.
We developed a polarized hyperspectral microscope to collect four types of Stokes vector data cubes (S0, S1, S2, and S3) of the pathologic slides with head and neck squamous cell carcinoma (HNSCC). Our system consists of an optical light microscope with a movable stage, two polarizers, two liquid crystal variable retarders (LCVRs), and a SnapScan hyperspectral camera. The polarizers and LCVRs work in tandem with the hyperspectral camera to acquire polarized hyperspectral images. Synthetic pseudo-RGB images are generated from the four Stokes vector data cubes based on a transformation function similar to the spectral response of human eye for the visualization of hyperspectral images. Collagen is the most abundant extracellular matrix (ECM) protein in the human body. A major focus of studying the ECM in tumor microenvironment is the role of collagen in both normal and abnormal function. Collagen tends to accumulate in and around tumors during cancer development and growth. In this study, we acquired images from normal regions containing normal cells and collagen fibers and from tumor regions containing cancerous squamous cells and collagen fibers on HNSCC pathologic slides. The preliminary results demonstrated that our customized polarized hyperspectral microscope is able to improve the visualization of collagen on HNSCC pathologic slides under different situations, including thick fibers of normal stroma, thin fibers of normal stroma, fibers of normal muscle cells, fibers accumulated in tumors, fibers accumulated around tumors. Our preliminary results also demonstrated that the customized polarized hyperspectral microscope is capable of extracting the spectral signatures of collagen based on Stokes vector parameters and can have various applications in pathology and oncology.
White blood cells, also called leukocytes, are hematopoietic cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. The abnormal development and uncontrolled proliferation of these cells can lead to devastating cancers. Their timely recognition in the peripheral blood is critical to diagnosis and treatment. In this study, we developed a microscopic imaging system for improving the visualization of white blood cells on Wright’s stained blood smear slides, with two different setups: polarized light imaging and polarized hyperspectral imaging. Based on the polarized light imaging setup, we collected the RGB images of Stokes vector parameters (S0, S1, S2, and S3) of five types of white blood cells (neutrophil, eosinophil, basophil, lymphocyte, and monocyte), and calculated the Stokes vector derived parameters: the degree of polarization (DOP), the degree of linear polarization (DOLP), and the degree of circular polarization (DOCP). Based on the polarized hyperspectral imaging setup, we also calculated Stokes vector data. The preliminary results demonstrate that Stokes vector derived parameters (DOP, DOLP, and DOCP) could improve the visualization of granules in granulocytes (neutrophils, eosinophils, and basophils). Furthermore, Stokes vector derived parameters (DOP, DOLP, and DOCP) could improve the visualization of surface structures (protein patterns) of lymphocytes enabling subclassification of lymphocyte subpopulations. Finally, S2, S3, and DOCP could improve the visualization of morphology on nucleus of monocytes. We also demonstrated that the polarized hyperspectral imaging setup could provide complementary spectral information to the spatial information on different Stokes vector parameters of white blood cells. This work demonstrates that polarized light imaging and polarized hyperspectral imaging has the potential to become a strong imaging tool in the diagnosis of disorders arising from white blood cells.
Penelitian kondisi oseanografi di perairan Selat Alas, Nusa Tenggara Barat telah dilakukan pada empat musim selama periode 1996-1997 yaitu musim peralihan ll, barat laut, peralihan l, dan musim tenggara.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.