Breast cancer is the second most common cause of cancer-related deaths among women. Early detection leads to better prognosis and saves lives. The 5-year survival rate of breast cancer is 99% if it is located only in breast. Conventional computer-aided diagnosis (CADx) systems for breast cancer use the single view information of mammograms to assist the radiologists. More recent work has focused on more than one views. Existing multi-view based CADx systems normally employ only two views namely Cranio-Caudal (CC) and Medio-Lateral-Oblique (MLO). The information fusion of the two views proved the effectiveness of the system for mammogram classification which cannot be achieved by single view information. However, combining the information of four views of mammograms increases the performance of classification. In this study, we propose Multi-View Feature Fusion (MVFF) based CADx system using feature fusion technique of four views for classification of mammogram. The complete CADx tool contains three stages, the first stage have the ability to classify mammogram into abnormal or normal, second stage is about classification of mass or calcification and in the final stage classification of malignant or benign classification is performed. Convolutional Neural Network (CNN) based feature extraction models operate on each view separately. These extracted features were fused into one final layer for ultimate prediction. Our proposed system is trained on four views of mammograms, after data augmentation. We performed our experiments on publicly available datasets such as CBIS-DDSM (Curated Breast Imaging Subset of DDSM) and mini-MIAS database of mammograms. In comparison with literature the MVFF based system is performed better than a single view-based system for mammogram classification. We have achieved area under ROC curve (AUC) of 0.932 for mass and calcification and 0.84 for malignant and benign, which is higher than all single-view based systems. The value of AUC for normal and abnormal classification is 0.93.
Breast cancer is a leading cause of death among women. Early detection can significantly reduce the mortality rate among women and improve their prognosis. Mammography is the first line procedure for early diagnosis. In the early era, conventional Computer-Aided Diagnosis (CADx) systems for breast lesion diagnosis were based on just single view information. The last decade evidence the use of two views mammogram: Medio-Lateral Oblique (MLO) and Cranio-Caudal (CC) view for the CADx systems. Most recent studies show the effectiveness of four views of mammogram to train CADx system with feature fusion strategy for classification task. In this paper, we proposed an end-to-end Multi-View Attention-based Late Fusion (MVALF) CADx system that fused the obtained predictions of four view models, which is trained for each view separately. These separate models have different predictive ability for each class. The appropriate fusion of multi-view models can achieve better diagnosis performance. So, it is necessary to assign the proper weights to the multi-view classification models. To resolve this issue, attention-based weighting mechanism is adopted to assign the proper weights to trained models for fusion strategy. The proposed methodology is used for the classification of mammogram into normal, mass, calcification, malignant masses and benign masses. The publicly available datasets CBIS-DDSM and mini-MIAS are used for the experimentation. The results show that our proposed system achieved 0.996 AUC for normal vs. abnormal, 0.922 for mass vs. calcification and 0.896 for malignant vs. benign masses. Superior results are seen for the classification of malignant vs benign masses with our proposed approach, which is higher than the results using single view, two views and four views early fusion-based systems. The overall results of each level show the potential of multi-view late fusion with transfer learning in the diagnosis of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.