More than 30 years have passed since the discovery of the first plant metallothionein in wheat embryos, from which the emergence of a uniquely diverse metallothionein family with a fascinating array of structural nuances and molecular properties has been witnessed. Metallothioneins are not only constitutively expressed, but the production of different types of plant metallothionein is also stimulated by a myriad of endogenous and exogenous agents in both a temporally and spatially regulated manner. This ubiquitous, yet discrete expression of metallothioneins not only signifies their importance for plant survival and development, but also suggests a functional divergence for the individual plant metallothionein subfamilies. Understanding why one type of plant metallothionein has more advantageous structural and metal binding attributes over another for a given biological process is a crucial piece in the puzzle of assigning physiological functions to these proteins. In this review, we discuss how in vivo and in vitro studies have advanced our understanding of the structure-property-function relationship for the plant metallothionein family. In particular, we highlight the progress that has been made for the Type 4 plant metallothioneins.
In entrapment an active species, which is often a catalyst, is trapped within a material by a solid or gel forming event; thus, it becomes dispersed within the solid or...
Ionic liquids have unique chemical properties that have fascinated scientists in many fields. The effects of adding ionic liquids to biocatalysts are many and varied. The uses of ionic liquids in biocatalysis include improved separations and phase behaviour, reduction in toxicity, and stabilization of protein structures. As the ionic liquid state of the art has progressed, concepts of what can be achieved in biocatalysis using ionic liquids have evolved and more beneficial effects have been discovered. In this review ionic liquids for whole-cell and isolated enzyme biocatalysis will be discussed with an emphasis on the latest developments, and a look to the future.
Materials have been developed that encapsulate a homogeneous catalyst and enable it to operate as a heterogeneous catalyst in water. A hydrophobic ionic liquid within the material was used to dissolve Fe-TAML and keep it from leaching into the aqueous phase. One-pot processes were used to entrap Fe-TAML in basic ionic liquid gels, and ionic liquid gel spheres structured via a modified Stöber synthesis forming SiO2 particles of uniform size. Catalytic activity was demonstrated via the oxidative degradation of dyes. Fe-TAML entrapped in a basic ionic liquid gel exhibited consistent activity in five recycles. This discovery of heterogenized H2O2 activators prepared by sol-gel and 2 Stöber processes opens new possibilities for the creation of engineered catalytic materials for water purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.