Nature-based solutions (NBS) can protect, manage and restore natural or modified ecosystems. They are a multidisciplinary, integrated approach to address societal challenges and some natural hazards effectively and adaptively, simultaneously providing human well-being and biodiversity benefits. NBS applications can be easily noticed in circular cities, establishing an urban system that is regenerative and accessible. This paper aims to offer a review on NBS for urban water management from the literature and some relevant projects running within the COST Action ‘Implementing nature-based solutions for creating a resourceful circular city’. The method used in the study is based on a detailed tracking of specific keywords in the literature using Google Scholar, ResearchGate, Academia.edu, ScienceDirect and Scopus. Based on this review, three main applications were identified: (i) flood and drought protection; (ii) the water-food-energy nexus; and (iii) water purification. The paper shows that NBS provide additional benefits, such as improving water quality, increasing biodiversity, obtaining social co-benefits, improving urban microclimate, and the reduction of energy consumption by improving indoor climate. The paper concludes that a systemic change to NBS should be given a higher priority and be preferred over conventional water infrastructure.
Brassinosteroids (BRs) and polyamines (PAs) regulate various responses to abiotic stress, but their involvement in the regulation of copper (Cu) homeostasis in plants exposed to toxic levels of Cu is poorly understood. This study provides an analysis of the effects of exogenously applied BRs and PAs on radish (Raphanus sativus) plants exposed to toxic concentrations of Cu. The interaction of 24-epibrassinolide (EBR, an active BR) and spermidine (Spd, an active PA) on gene expression and the physiology of radish plants resulted in enhanced tolerance to Cu stress. Results indicated that the combined application of EBR and Spd modulated the expression of genes encoding PA enzymes and genes that impact the metabolism of indole-3-acetic acid (IAA) and abscisic acid (ABA) resulting in enhanced Cu stress tolerance. Altered expression of genes implicated in Cu homeostasis appeared to be the main effect of EBR and Spd leading to Cu stress alleviation in radish. Ion leakage, in vivo imaging of H2O2, comet assay, and improved tolerance of Cu-sensitive yeast strains provided further evidence for the ability of EBR and Spd to improve Cu tolerance significantly. The study indicates that co-application of EBR and Spd is an effective approach for Cu detoxification and the maintenance of Cu homeostasis in plants. Therefore, the use of these compounds in agricultural production systems should be explored.
A framework developed by the COST Action Circular City (an EU-funded network of 500+ scientists from 40+ countries; COST = Cooperation in Science and Technology) for addressing Urban Circularity Challenges (UCCs) with nature-based solutions (NBSs) was analyzed by various urban sectors which refer to different fields of activities for circular management of resources in cities (i.e., reducing use of resources and production of waste). The urban sectors comprise the built environment, urban water management, resource recovery, and urban farming. We present main findings from sector analyses, discuss different sector perspectives, and show ways to overcome these differences. The results reveal the potential of NBSs to address multiple sectors, as well as multiple UCCs. While water has been identified as a key element when using NBSs in the urban environment, most NBSs are interconnected and also present secondary benefits for other resources. Using representative examples, we discuss how a holistic and systemic approach could facilitate the circular use of resources in cities. Currently, there is often a disciplinary focus on one resource when applying NBSs. The full potential of NBSs to address multifunctionality is, thus, usually not fully accounted for. On the basis of our results, we conclude that experts from various disciplines can engage in a cross-sectoral exchange and identify the full potential of NBSs to recover resources in circular cities and provide secondary benefits to improve the livelihood for locals. This is an important first step toward the full multifunctionality potential enabling of NBSs.
Nature-Based Solutions (NBS) have been proven to effectively mitigate and solve resource depletion and climate-related challenges in urban areas. The COST (Cooperation in Science and Technology) Action CA17133 entitled “Implementing nature-based solutions (NBS) for building a resourceful circular city” has established seven urban circularity challenges (UCC) that can be addressed effectively with NBS. This paper presents the outcomes of five elucidation workshops with more than 20 European experts from different backgrounds. These international workshops were used to examine the effectiveness of NBS to address UCC and foster NBS implementation towards circular urban water management. A major outcome was the identification of the two most relevant challenges for water resources in urban areas: ‘Restoring and maintaining the water cycle’ (UCC1) and ‘Water and waste treatment, recovery, and reuse’ (UCC2). s Moreover, significant synergies with ‘Nutrient recovery and reuse’, ‘Material recovery and reuse’, ‘Food and biomass production’, ‘Energy efficiency and recovery’, and ‘Building system recovery’ were identified. Additionally, the paper presents real-life case studies to demonstrate how different NBS and supporting units can contribute to the UCC. Finally, a case-based semi-quantitative assessment of the presented NBS was performed. Most notably, this paper identifies the most typically employed NBS that enable processes for UCC1 and UCC2. While current consensus is well established by experts in individual NBS, we presently highlight the potential to address UCC by combining different NBS and synergize enabling processes. This study presents a new paradigm and aims to enhance awareness on the ability of NBS to solve multiple urban circularity issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.