Abstract. In this paper, we propose the AVVMC VM consolidation scheme that focuses on balanced resource utilization of servers across different computing resources (CPU, memory, and network I/O) with the goal of minimizing power consumption and resource wastage. Since the VM consolidation problem is strictly NP-hard and computationally infeasible for large data centers, we propose adaptation and integration of the Ant Colony Optimization (ACO) metaheuristic with balanced usage of computing resources based on vector algebra. Our simulation results show that AVVMC outperforms existing methods and achieves improvement in both energy consumption and resource wastage reduction.
Today's Cloud applications are dominated by composite applications comprising multiple computing and data components with strong communication correlations among them. Although Cloud providers are deploying large number of computing and storage devices to address the ever increasing demand for computing and storage resources, network resource demands are emerging as one of the key areas of performance bottleneck. This paper addresses networkaware placement of virtual components (computing and data) of multi-tier applications in data centers and formally defines the placement as an optimization problem. The simultaneous placement of Virtual Machines and data blocks aims at reducing the network overhead of the data center network infrastructure. A greedy heuristic is proposed for the on-demand application components placement that localizes network traffic in the data center interconnect. Such optimization helps reducing communication overhead in upper layer network switches that will eventually reduce the overall traffic volume across the data center. This, in turn, will help reducing packet transmission delay, increasing network performance, and minimizing the energy consumption of network components. Experimental results demonstrate performance superiority of the proposed algorithm over other approaches where it outperforms the stateof-the-art network-aware application placement algorithm across all performance metrics by reducing the average network cost up to 67% and network usage at core switches up to 84%, as well as increasing the average number of application deployments up to 18%.
With the pragmatic realization of computing as a utility, Cloud Computing has recently emerged as a highly successful alternative IT paradigm. Cloud providers are deploying large-scale data centers across the globe to meet the Cloud customers' compute, storage, and network resource demands. Efficiency and scalability of these data centers, as well as the performance of the hosted applications' highly depend on the allocations of the data center resources. Very recently, network-aware Virtual Machine (VM) placement and migration is developing as a very promising technique for the optimization of compute-network resource utilization, energy consumption, and network traffic minimization. This chapter presents the relevant background information and a detailed taxonomy that characterizes and classifies the various components of VM placement and migration techniques, as well as an elaborate survey and comparative analysis of the state of the art techniques. Besides highlighting the various aspects and insights of the network-aware VM placement and migration strategies and algorithms proposed by the research community, the survey further identifies the benefits and limitations of the existing techniques and discusses on the future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.