Acquisition of data in task-specific applications of machine learning like plant disease recognition is a costly endeavor owing to the requirements of professional human diligence and time constraints. In this paper, we present a simple pipeline that uses GANs in an unsupervised image translation environment to improve learning with respect to the data distribution in a plant disease dataset, reducing the partiality introduced by acute class imbalance and hence shifting the classification decision boundary towards better performance. The empirical analysis of our method is demonstrated on a limited dataset of 2789 tomato plant disease images, highly corrupted with an imbalance in the 9 disease categories. First, we extend the state of the art for the GAN-based image-to-image translation method by enhancing the perceptual quality of the generated images and preserving the semantics. We introduce AR-GAN, where in addition to the adversarial loss, our synthetic image generator optimizes on Activation Reconstruction loss (ARL) function that optimizes feature activations against the natural image. We present visually more compelling synthetic images in comparison to most prominent existing models and evaluate the performance of our GAN framework in terms of various datasets and metrics. Second, we evaluate the performance of a baseline convolutional neural network classifier for improved recognition using the resulting synthetic samples to augment our training set and compare it with the classical data augmentation scheme. We observe a significant improvement in classification accuracy (+5.2%) using generated synthetic samples as compared to (+0.8%) increase using classic augmentation in an equal class distribution environment.
Application of computer vision and robotics in agriculture requires sufficient knowledge and understanding of the physical properties of the object of interest. Yield monitoring is an example where these properties affect the quantified estimation of yield mass. In this study, we propose an image-processing and artificial intelligence-based system using multi-class detection with instance-wise segmentation of fruits in an image that can further estimate dimensions and mass. We analyze a tomato image dataset with mass and dimension values collected using a calibrated vision system and accurate measuring devices. After successful detection and instance-wise segmentation, we extract the real-world dimensions of the fruit. Our characterization results exhibited a significantly high correlation between dimensions and mass, indicating that artificial intelligence algorithms can effectively capture this complex physical relation to estimate the final mass. We also compare different artificial intelligence algorithms to show that the computed mass agrees well with the actual mass. Detection and segmentation results show an average mask intersection over union of 96.05%, mean average precision of 92.28%, detection accuracy of 99.02%, and precision of 99.7%. The mean absolute percentage error for mass estimation was 7.09 for 77 test samples using a bagged ensemble tree regressor. This approach could be applied to other computer vision and robotic applications such as sizing and packaging systems and automated harvesting or to other measuring instruments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.