Wormlike micelle surfactant solutions showed turbulent drag reduction effects in pipe flows. It was well-known that SIS (Shear Induced Structure), reported in previous studies, made them. However, inner diameters (characteristic length) of pipes used in the previous studies were in the order of millimeter. Thus, shear rates were limited to the order of 10 4 s −1 at a maximum. In the present study, flow properties of water and wormlike micelle surfactant solutions were investigated at higher shear rates using capillaries whose inner diameters ranged from 133 µm to 2.87 mm. Because the observed Reynolds number estimated for the micron-sized capillaries ranged from 10 2 to 10 4 , drag reduction effects were observed as a pseudo-laminarization, which is a phenomenon that transition from laminar flows to turbulent flows with the increase in the Reynolds number delays. Viscosity measurements using a capillary method indicated that the surfactant solution used in the present study had non-Newtonian viscosity. Therefore, the Reynolds number of the surfactant solution flow was estimated by the generalized Reynolds number. By using a jet thrust method, elastic properties of wormlike micelle surfactant solutions were measured in the corresponding to the viscosity measurement. For water, the resultant pressure drops (the frictional coefficient of pipes) agreed with both the prediction of laminar flows and the Blasius expression. diameters. In other words, these results suggested that the pseudo-laminarization was occurred in the capillary flows. Moreover, the relationship between the shear rate at which the surfactant viscosity asymptotically approached to the water one and the transition to turbulent flows was discussed to clarify their correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.