Genetic algorithm (GA) is a model of machine learning. The algorithm can be used to find sub‐optimum, if not optimum, solution(s) to a particular problem. It explores the solution space in an intelligent manner to evolve better solutions. The algorithm does not need any specific programming efforts but requires encoding the solution as strings of parameters. The field of application of genetic algorithms has increased dramatically in the last few years. A large variety of possible GA application tools now exist for non‐computer specialists. Complicated problems in a specific optimization domain can be tackled effectively with a very modest knowledge of the theory behind genetic algorithms. This paper reviews the technique briefly and applies it to solve some of the optimization problems addressed in construction management literature. The lessons learned from the application of GA to these problems are discussed. The result of this review is an indication of how the GA can contribute in solving construction‐related optimization problems. A summary of general guidelines to develop solutions using this optimization technique concludes the paper.
Genetic algorithm (GA) is a model of machine learning. The algorithm can be used to find sub‐optimum, if not optimum, solution(s) to a particular problem. It explores the solution space in an intelligent manner to evolve better solutions. The algorithm does not need any specific programming efforts but requires encoding the solution as strings of parameters. The field of application of genetic algorithms has increased dramatically in the last few years. A large variety of possible GA application tools now exist for non‐computer specialists. Complicated problems in a specific optimization domain can be tackled effectively with a very modest knowledge of the theory behind genetic algorithms. This paper reviews the technique briefly and applies it to solve some of the optimization problems addressed in construction management literature. The lessons learned from the application of GA to these problems are discussed. The result of this review is an indication of how the GA can contribute in solving construction‐related optimization problems. A summary of general guidelines to develop solutions using this optimization technique concludes the paper.
This paper describes a neural network model that can provide assistance in predicting the additional increase in project cost, due to political risk source variables affecting a construction project. The risk factors that affect a construction project are classified as “political source variables” and “project consequence variables.” These source variables are identified and represented in a neural network model. The paper explains how the developed political risk control model can be incorporated directly into a project cost estimation process. The paper concludes with a discussion of the capabilities and limitations of the proposed political risk estimation method, and how it will assist project managers in computing a realistic cost estimate for typical international construction projects under different political conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.