In this investigation repetitive upsetting-extrusion (RUE) process was used to investigate the effect of severe plastic deformation on the microstructural changes and flow behavior of commercial pure copper. Initial material together with two passes, four passes and eight passes of RUE in annealed and non-annealed condition were studied. Results show that grain refinement, in the scale of nano meter, has mostly been achieved only after two passes of RUE which is essentially a combination of one upsetting and one extrusion path. Increasing the number of passes after four passes of RUE did not have discernible effect on the grain refinement. Such a behavior is explained to be due to saturation of dislocations and the formation of high angle grain boundaries after only two passes of RUE. The grains after eight passes of RUE process even became slightly larger than the two and the four passes of RUE. This was related to restoration phenomena occurring during high number of passes of RUE. Flow strength of the material after different passes substantially increased, though the rate at which the flow stress increased declined by increasing the number of passes. ETMB model were used to explain the deformation behavior of the RUE samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.