The cognitive radio paradigm for developing next-century wireless communication systems is rapidly entering the mainstream, and various aspects of it are currently being applied in 5G technology, aeronautical engineering, military communications, emergency, and public safety applications, satellite communication, and healthcare. Cognitive radio focuses on the existence of software defined radio architectures that allow dynamic reconfiguration. Many researchers have taken initiatives in the last decade to achieve the reconfiguration ability in cognitive radio systems to support the concept of dynamic spectrum access. As cognitive radio adapts dynamic spectrum allocation for its users, the physical implementation requires reconfigurable filters that can alter the carrier frequencies and bandwidth. Although there are many ways to reconfigure filter operation, diode based reconfiguration has received utmost attention among researchers because of its shorter response delay and easy implementation. In the last decade, researchers have reported several diode-based reconfigurable filters, including their characteristics such as filter function, filter combination, tuning range, variation in bandwidth, isolation, and resonance. However, to examine the potential of these filters in the application of cognitive radio, a comprehensive review needs to be pursued. In this review article, the descriptions of several diode based reconfigurable filters are illustrated with their exhibiting characteristics. The detailed information provided in this article has disclosed that primarily three different types diode based reconfigurable filters have been reported by researchers: Tunable, Switchable, and Hybrid (Both Tunable and Switchable). It is also found that each type of reconfiguration can further be segregated in terms of filter function, centre frequency variation, and bandwidth variation. The detailed categorization of the reconfiguration presented in this paper provides a systematic approach to select the correct reconfigurable filter for the desired frequency reconfiguration in cognitive radio.
The ever-growing expectation for high data rates has led to the introduction of multiple-input multiple-output (MIMO) technologies to wireless connectivity. Such a system requires an MIMO antenna with high isolation. At the same time, the MIMO dimension should not be compromised for achieving high isolation. Thus, isolation techniques that do not allow an increase in dimension need to be fostered for MIMO antenna design. In this paper, a novel low-profile, miniaturized MIMO antenna with high isolation was developed considering a split ring resonator (SRR)-based bandstop filter as a decoupling network. The bandstop filter was designed with a unit cell split ring resonator structure and was deployed between two closely spaced monopole MIMO antenna elements to obtain isolation as high as 39.25 dB at 2.61 GHz. Two open-circuit stub lines were attached with the MIMO feeding network to achieve good impedance matching at resonance frequency. The proposed antenna exhibited a peak gain of 3.8 dBi and radiation efficiency of 84%. It had a low envelop correlation coefficient (ECC < 0.12), high diversity gain (DG > 9.95 dB), low mean effective gain ratio (MEG 1/MEG 2 < 0.05 dB), and low channel capacity loss (CCL < 0.042 bits/s/Hz) at resonance frequency. The overall antenna dimension was restricted to 44 mm ×22 mm (0.38 λ0×0.19 λ0) for its easy integration in compact wireless devices.
A compact reconfigurable MIMO antenna was developed for cognitive radio applications in this research work. A bandstop filter-based decoupling network was employed in this MIMO antenna to keep mutual coupling at a minimum. A single PIN diode was connected in the filter configuration for the purpose of reconfiguration. Controlling the ON/OFF conditions of the PIN diode, it became possible to achieve a MIMO operating frequency of 4.75 GHz in mode 1 and 1.77 GHz in mode 2, respectively. At 4.75 GHz, isolation was 42.68 dB, while at 1.77 GHz, isolation was 26.52 dB. The proposed reconfigurable MIMO antenna achieved a peak gain and radiation efficiency of 6.63 dBi and 92.04 percent in mode 1 and 4.41 dBi and 89.64 percent in mode 2. MIMO characteristics such as an envelope correlation coefficient (ECC) less than 0.253, diversity gain (DG) greater than 9.675 dB, a mean effective gain (MEG) measurement ratio of less than 0.00388 dB, and channel capacity loss (CCL) of less than 0.06528 bits/s/Hz were measured for both operational frequency bands. To make it simple to integrate into small wireless devices, the overall size of the antenna is limited to 48 mm×24 mm 0.28 λ0×0.12 λ0.
In this work, a switchable bandstop filter is used as a decoupling structure for developing a miniaturized reconfigurable multiple input multiple output (MIMO) antenna. Initially, a dual band ((2.43-2.60 GHz and 3.51-3.79 GHz)) single monopole antenna structure is developed on FR4 substrate. Then the single monopole antenna and its replica are accommodated in a small space with an edge to edge separation distance of 11 mm to form a 2 port MIMO antenna. Now, a switchable bandstop filter is used as a decoupling network between two closely spaced monopole antenna elements to prevent mutual coupling and reconfigure the antenna characteristics. The dual pole switchable bandstop filter is configured in such a way that one of its poles lies at 2.5 GHz in one state (Mode 1) and at 3.68 GHz in another state (Mode 2) under the switching action of two PIN diodes. Controlling the ON/OFF states of the PIN diodes in the bandstop filter, high isolation is achieved alternately in lower (2.43-2.60 GHz) and upper (3.51-3.79 GHz) frequency bands of the MIMO antenna. Also, stub network is used to improve impedance matching in the upper frequency band. The proposed isolation technique helps the antenna to yield high isolation (>30 dB), fair gain (>2.97 dBi), reasonable radiation efficiency (>86.8 %), low envelope correlation coefficient (<0.16), high diversity gain (DG >9.88 dB), low Mean effective gain ratio (MEG 1/MEG 2 <0.05 dB) and low channel capacity loss (CCL <0.06 bits/s/Hz) for both the operating frequency bands. The overall dimension of the antenna is restricted to 44mm × 22mm (0.36λ o × 0.18λ o ) for its easy integration in compact wireless devices. This type of reconfigurable MIMO antenna is best suited for cognitive radio communication, which promotes efficient spectrum utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.