Crystalline protein assemblies of polyhedra crystal (PhC) can be utilized as solid enzyme containers for long-term storage of enzymes with retention of their enzymatic activity. The enzymes can be released from the crystals at the optimum pH for the enzymatic activity by dissolution of the crystals using in vivo crystal engineering.
Protein crystals are formed via ordered arrangements of proteins, which assemble to form supramolecular structures. Here, we show a method for the assembly of supramolecular protein cages within a crystalline environment. The cages are stabilized by covalent cross-linking allowing their release via dissolution of the crystal. The high stability of the desiccated protein crystals allows cages to be constructed.
Protein assemblies can be designed for development of nano–bio materials. This has been achieved by modulating protein–protein interactions. However, fabrication of highly ordered protein assemblies remains challenging. Protein crystals, which have highly ordered arrangements of protein molecules, provide useful source matrices for synthesizing artificial protein assemblies. Here, we describe construction of a supramolecular filament structure by engineering covalent and non‐covalent interactions in a protein crystal. Performing in‐cell crystallization of Trypanosoma brucei cysteine protease cathepsin B (TbCatB), we achieved a precise arrangement of protein molecules while suppressing random aggregation due to disulfide bonds. We succeeded in synthesizing bundled filament from the crystals by autoxidation of cysteinyl thiols after the isolation of the crystals from living cells.
Protein assemblies can be designed for development of nano–bio materials. This has been achieved by modulating protein–protein interactions. However, fabrication of highly ordered protein assemblies remains challenging. Protein crystals, which have highly ordered arrangements of protein molecules, provide useful source matrices for synthesizing artificial protein assemblies. Here, we describe construction of a supramolecular filament structure by engineering covalent and non‐covalent interactions in a protein crystal. Performing in‐cell crystallization of Trypanosoma brucei cysteine protease cathepsin B (TbCatB), we achieved a precise arrangement of protein molecules while suppressing random aggregation due to disulfide bonds. We succeeded in synthesizing bundled filament from the crystals by autoxidation of cysteinyl thiols after the isolation of the crystals from living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.