This study aimed to analyse whether increasing the eccentric overload (EO) during resistance training, in terms of range of motion and/or velocity using an electric-motor device, would induce different muscle adaptations than conventional flywheel-EO resistance training. Forty physically active university students (21.7 ± 3.4 years) were randomly placed into one of the three training groups (EX1, EX2, FW) and a control group without training (n = 10 per group). Participants in the training groups completed 12 sessions (4 sets of 7 repetitions) of iso-inertial single-leg squat training over 6 weeks for the dominant leg. Resistance was generated either by an electric-motor device at two different velocities for the eccentric phase; 100% (EX1) or 150% (EX2) of concentric speed, or by a conventional flywheel device (FW). Thigh lean tissue mass, unilateral leg press one-repetition maximum (1-RM), unilateral muscle power at different percentages of the 1-RM and bilateral/unilateral vertical jump were assessed before and after the 6-week training. There were significant (p < 0.05-0.001) main effects of time in the 3 training groups, indicating increased thigh lean tissue mass (2.5-5.8%), 1-RM load (22.4-30.2%), vertical jump performance (9.1-32.9%) and muscle power (8.8-21.7%), without differences across experimental groups. Participants in the control group did not improve any of the variables measured. In addition, EX2 showed greater gains in eccentric average peak power during training than EX1 and FW (p < 0.001). Despite the different EO offered, 6 weeks of resistance training using flywheel or electric-motor devices induced similar significant gains in muscle mass, strength, muscle power and vertical jump.
Background and Objectives: To investigate the effects of unilateral accentuated eccentric loading (AEL) on changes in lean mass and function of leg trained (TL) and ipsilateral non-trained arm (NTA) in young men and women. Materials and Methods: In a prospective trial, 69 Physically active university students (20.2 ± 2.2 years) were randomly placed into a training group (n = 46; 27 men, 19 women) or a control group without training (n = 23; 13 men, 10 women). Participants in the training group performed unilateral AEL in the leg press exercise of the dominant leg twice a week for 10 weeks. An electric motor device-generated isotonic resistance at different intensities for both concentric (30% of 1-RM) and eccentric contractions (105% of 1-RM). Changes in thigh and arm lean tissue mass, unilateral leg press and unilateral elbow flexion maximal concentric (1-RM) and isometric strength (MVIC), and unilateral muscle power at 40, 60, and 80% 1-RM for both leg press and elbow flexion exercises before and after intervention were compared between groups, between sexes and between TL and NTA. Results: Both men and women in the training group showed increases (p < 0.05) in lean tissue mass, 1-RM, MVIC, and muscle power for TL. In NTA, 1-RM, MVIC, and muscle power increased without significant differences between sexes, but neither in men nor women changes in lean tissue mass were observed. In addition, men showed greater changes in TL, but changes in NTA were similar between sexes. No gains in any variable were found for the control group. Conclusions: AEL protocol produced similar neuromuscular changes in TL and ipsilateral NTA, which suggests that strong ipsilateral lower-to-upper limb cross-transfer effects were induced by the eccentric-overload training. However, early ipsilateral increases in muscle force and power were not associated with lean mass gains. Both men and women experienced similar changes in NTA; however, men showed greater changes in TL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.