Cell adhesion molecule 1 (CADM1), a member of the immunoglobulin superfamily, is identified as a novel cell surface marker for human T-cell leukemia virus (HTLV-1)-infected T cells. Adult T-cell leukemia/lymphoma (ATLL) is developed in HTLV-1-infected T-cells after a long infection period. To examine the mechanism of CADM1 overexpression in ATLL, we first identified that CADM1 is transcriptionally up-regulated by a transcriptional enhancer element through NF-κB signaling pathway. In HTLV-1-infected T-cells, CADM1 expression is dependent on HTLV-1/Tax through activation of canonical and non-canonical NF-κB; however, in ATLL cells with frequent loss of Tax expression, the activation of canonical NF-κB only enhances the CADM1 expression. Along with active mutations in signaling molecules under T-cell recepor (TCR) signaling, degradation of p47, a negative regulator of NF-κB, was essential for activation of canonical NF-κB through stabilization of NEMO (NF-κB essential modulator). The mechanism of p47 degradation is primarily dependent on activation of lysosomal-autophagy and the autophagy is activated in most of the HTLV-infected and ATLL cells, suggesting that the p47 degradation may be a first key molecular event during HTLV-1 infection to T-cells as a connector of two important signaling pathways, NF-κB and autophagy.
G protein-coupled receptor 56 (GPR56) is highly expressed in acute myeloid leukemia (AML) cells with high EVI1 expression (EVI1high AML). Because GPR56 is a transcriptional target of EVI1 and silencing of GPR56 expression induces apoptosis, we developed a novel drug to suppress GPR56 expression in EVI1high AML cells. For this purpose, we generated pyrrole-imidazole (PI) polyamides specific to GPR56 (PIP/56-1 or PIP/56-2) as nuclease-resistant novel compounds that interfere with the binding of EVI1 to the GPR56 promoter in a sequence-specific manner. Treatment of EVI1high AML cell lines (UCSD/AML1 and Kasumi-3) with PIP/56-1 or PIP/56-2 effectively suppressed GPR56 expression by inhibiting binding of EVI1 to its promoter, leading to suppression of cell growth with increased rates of apoptosis. Moreover, intravenous administration of PIP/56-1 into immunodeficient Balb/c-RJ mice subcutaneously transplanted with UCSD/AML1 cells significantly inhibited tumor growth and extended survival. Furthermore, organ infiltration by leukemia cells in immunodeficient Balb/c-RJ mice, which were intravenously transplanted using UCSD/AML1 cells, was successfully inhibited by PIP/56-1 treatment with no apparent effects on murine hematopoietic cells. In addition, PIP treatment did not inhibit colony formation of human CD34+ progenitor cells. Thus, PI polyamide targeting of GPR56 using our compound is promising, useful, and safe for the treatment of EVI1high AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.