Deep neural networks (DNNs) are being prototyped for a variety of artificial intelligence (AI) tasks including computer vision, data analytics, robotics, etc. The efficacy of DNNs coincides with the fact that they can provide state-ofthe-art inference accuracy for these applications. However, this advantage comes from the high computational complexity of the DNNs in use. Hence, it is becoming increasingly important to scale these DNNs so that they can fit on resource-constrained hardware and edge devices. The main goal is to allow efficient processing of the DNNs on low-power micro-AI platforms without compromising hardware resources and accuracy. In this work, we aim to provide a comprehensive survey about the recent developments in the domain of energy-efficient deployment of DNNs on micro-AI platforms. To this extent, we look at different neural architecture search strategies as part of micro-AI model design, provide extensive details about model compression and quantization strategies in practice, and finally elaborate on the current hardware approaches towards efficient deployment of the micro-AI models on hardware. The main takeaways for a reader from this article will be understanding of different search spaces to pinpoint the best micro-AI model configuration, ability to interpret different quantization and sparsification techniques, and the realization of the micro-AI models on resource-constrained hardware and different design considerations associated with it.
The continuing effect of COVID-19 pulmonary infection has highlighted the importance of machine-aided diagnosis for its initial symptoms such as fever, dry cough, fatigue, and dyspnea. This paper attempts to address the respiratory-related symptoms, using a low power scalable software and hardware framework. We propose CoughNet, a flexible low power CNN-LSTM processor that can take audio recordings as input to detect cough sounds in audio recordings. We analyze the three different publicly available datasets and use those as part of our evaluation to detect cough sound in audio recordings. We perform windowing and hyperparameter optimization on the software side with regard to fitting the network architecture to the hardware system. A scalable hardware prototype is designed to handle different numbers of processing engines and flexible bitwidth using Verilog HDL on Xilinx Kintex-7 160t FPGA. The proposed implementation of hardware has a low power consumption of o 290 mW and energy consumption of 2 mJ which is about 99 × less compared to the state-of-the-art implementation.
This article presents an energy-efficient and flexible multichannel Electroencephalogram (EEG) artifact identification network and its hardware using depthwise and separable convolutional neural networks. EEG signals are recordings of the brain activities. EEG recordings that are not originated from cerebral activities are termed artifacts . Our proposed model does not need expert knowledge for feature extraction or pre-processing of EEG data and has a very efficient architecture implementable on mobile devices. The proposed network can be reconfigured for any number of EEG channel and artifact classes. Experiments were done with the proposed model with the goal of maximizing the identification accuracy while minimizing the weight parameters and required number of operations. Our proposed network achieves 93.14% classification accuracy using an EEG dataset collected by 64-channel BioSemi ActiveTwo headsets, averaged across 17 patients and 10 artifact classes. Our hardware architecture is fully parameterized with number of input channels, filters, depth, and data bit-width. The number of processing engines (PE) in the proposed hardware can vary between 1 to 16, providing different latency, throughput, power, and energy efficiency measurements. We implement our custom hardware architecture on Xilinx FPGA (Artix-7), which on average consumes 1.4 to 4.7 mJ dynamic energy with different PE configurations. Energy consumption is further reduced by 16.7× implementing on application-specified integrated circuit at the post layout level in 65-nm CMOS technology. Our FPGA implementation is 1.7 × to 5.15 × higher in energy efficiency than some previous works. Moreover, our Application-Specified Integrated Circuit implementation is also 8.47 × to 25.79 × higher in energy efficiency compared to previous works. We also demonstrated that the proposed network is reconfigurable to detect artifacts from another EEG dataset collected in our lab by a 14-channel Emotiv EPOC+ headset and achieved 93.5% accuracy for eye blink artifact detection.
With the emergence of Artificial Intelligence (AI), new attention has been given to implement AI algorithms on resource constrained tiny devices to expand the application domain of IoT. Multimodal Learning has recently become very popular with the classification task due to its impressive performance for both image and audio event classification. This paper presents \emph{\sys{}} - a flexible system algorithm co-designed multimodal learning framework for resource constrained tiny devices. The framework was designed to be evaluated on two different case-studies: COVID-19 detection from multimodal audio recordings and battle field object detection from multimodal images and audios. In order to compress the model to implement on tiny devices, substantial network architecture optimization and mixed precision quantization were performed (mixed 8-bit and 4-bit). \emph{\sys{}} shows that even a tiny multimodal learning model can improve the classification performance than that of any unimodal frameworks. The most compressed \emph{\sys{}} achieves 88.4\% COVID-19 detection accuracy (14.5\% improvement from unimodal base model) and 96.8\% battle field object detection accuracy (3.9\% improvement from unimodal base model). Finally, we test our \emph{\sys{}} models on a Raspberry Pi 4 to see how they perform when deployed to a resource constrained tiny device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.