Cyberbullying (CB) has become increasingly prevalent in social media platforms. With the popularity and widespread use of social media by individuals of all ages, it is vital to make social media platforms safer from cyberbullying. This paper presents a hybrid deep learning model, called DEA-RNN, to detect CB on Twitter social media network. The proposed DEA-RNN model combines Elman type Recurrent Neural Networks (RNN) with an optimized Dolphin Echolocation Algorithm (DEA) for finetuning the Elman RNN's parameters and reducing training time. We evaluated DEA-RNN thoroughly utilizing a dataset of 10000 tweets and compared its performance to those of state-of-the-art algorithms such as Bi-directional long short term memory (Bi-LSTM), RNN, SVM, Multinomial Naive Bayes (MNB), Random Forests (RF). The experimental results show that DEA-RNN was found to be superior in all the scenarios. It outperformed the considered existing approaches in detecting CB on Twitter platform. DEA-RNN was more efficient in scenario 3, where it has achieved an average of 90.45% accuracy, 89.52% precision, 88.98% recall, 89.25% F1-score, and 90.94% specificity.
Social media platforms such as (Twitter, Facebook, and Weibo) are being increasingly embraced by individuals, groups, and organizations as a valuable source of information. This social media generated information comes in the form of tweets or posts, and normally characterized as short text, huge, sparse, and low density. Since many real-world applications need semantic interpretation of such short texts, research in Short Text Topic Modeling (STTM) has recently gained a lot of interest to reveal unique and cohesive latent topics. This article examines the current state of the art in STTM algorithms. It presents a comprehensive survey and taxonomy of STTM algorithms for short text topic modelling. The article also includes a qualitative and quantitative study of the STTM algorithms, as well as analyses of the various strengths and drawbacks of STTM techniques. Moreover, a comparative analysis of the topic quality and performance of representative STTM models is presented. The performance evaluation is conducted on two real-world Twitter datasets: the Real-World Pandemic Twitter (RW-Pand-Twitter) dataset and Real-world Cyberbullying Twitter (RW-CB-Twitter) dataset in terms of several metrics such as topic coherence, purity, NMI, and accuracy. Finally, the open challenges and future research directions in this promising field are discussed to highlight the trends of research in STTM. The work presented in this paper is useful for researchers interested in learning state-of-the-art short text topic modelling and researchers focusing on developing new algorithms for short text topic modelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.