In this article, the mathematical model with different compartments for the transmission dynamics of coronavirus-19 disease (COVID-19) is presented under the fractional-order derivative. Some results regarding the existence of at least one solution through fixed point results are derived. Then for the concerned approximate solution, the modified Euler method for fractional-order differential equations (FODEs) is utilized. Initially, we simulate the results by using some available data for different fractional-order to show the appropriateness of the proposed method. Further, we compare our results with some reported real data against confirmed infected and death cases per day for the initial 67 days in Wuhan city.
The biological models for the study of human immunodeficiency virus (HIV) and its advanced stage acquired immune deficiency syndrome (AIDS) have been widely studied in last two decades. HIV virus can be transmitted by different means including blood, semen, preseminal fluid, rectal fluid, breast milk, and many more. Therefore, initiating HIV treatment with the TB treatment development has some advantages including less HIV‐related losses and an inferior risk of HIV spread also having difficulties including incidence of immune reconstitution inflammatory syndrome (IRIS) because of a large pill encumbrance. It has been analyzed that patients with HIV have more weaker immune system and are susceptible to infections, for example, tuberculosis (TB). Keeping the importance of the HIV models, we are interested to consider an analysis of HIV‐TB coinfected model in the Atangana‐Baleanu fractional differential form. The model is studied for the existence, uniqueness of solution, Hyers‐Ulam (HU) stability and numerical simulations with assumption of specific parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.