The amygdala-dependent molecular mechanisms driving the onset and persistence of posttraumatic stress disorder (PTSD) are poorly understood. Recent observational studies have suggested that opioid analgesia in the aftermath of trauma may decrease the development of PTSD. Using a mouse model of dysregulated fear, we found altered expression within the amygdala of the Oprl1 gene (opioid receptor–like 1), which encodes the amygdala nociceptin (NOP)/orphanin FQ receptor (NOP-R). Systemic and central amygdala infusion of SR-8993, a new highly selective NOP-R agonist, impaired fear memory consolidation. In humans, a single-nucleotide polymorphism (SNP) within OPRL1 is associated with a self-reported history of childhood trauma and PTSD symptoms (n = 1847) after a traumatic event. This SNP is also associated with physiological startle measures of fear discrimination and magnetic resonance imaging analysis of amygdala-insula functional connectivity. Together, these data suggest that Oprl1 is associated with amygdala function, fear processing, and PTSD symptoms. Further, our data suggest that activation of the Oprl1/NOP receptor may interfere with fear memory consolidation, with implications for prevention of PTSD after a traumatic event.
SignificanceHundreds of failed clinical trials with Alzheimer’s disease (AD) patients over the last fifteen years demonstrate that the one-target–one-disease approach is not effective in AD. In silico, structure-based, multitarget drug design approaches to treat multifactorial diseases have not been successful in the context of AD either. Here, we show that M344, an inhibitor of class I and IIB histone deacetylases, affects multiple AD-related genes, including those related to both early- and late-onset AD. We also show that M344 improves memory in the 3xTg AD mouse model. This work endorses a shift to a multitargeted approach to the treatment of AD, supporting the therapeutic potential of a single small molecule with an epigenetic mechanism of action.
Schizophrenia is widely acknowledged as being a syndrome, consisting of an undefined number of diseases probably with differing pathologies. Although studying a syndrome makes the identification of an underlying pathology more difficult; neuroimaging, neuropsychopharmacological and post-mortem brain studies all implicate muscarinic acetylcholine receptors (CHRM) in the pathology of the disorder. We have established that the CHRM1 is selectively decreased in the dorsolateral prefrontal cortex of subjects with schizophrenia. To expand this finding, we wanted to ascertain whether decreased cortical CHRMs might (1) define a subgroup of schizophrenia and/or (2) be related to CHRM1 genotype. We assessed cortical [ 3 H]pirenzepine binding and sequenced the CHRM1 in 80 subjects with schizophrenia and 74 age sex-matched control subjects. Kernel density estimation showed that [ 3 H]pirenzepine binding in BA9 divided the schizophrenia, but not control, cohort into two distinct populations. One of the schizophrenia cohorts, comprising 26% of all subjects with the disorder, had a 74% reduction in mean cortical [ 3 H]pirenzepine binding compared to controls. We suggest that these individuals make up 'muscarinic receptor-deficit schizophrenia' (MRDS). The MRDS could not be separated from other subjects with schizophrenia by CHRM1 sequence, gender, age, suicide, duration of illness or any particular drug treatment. Being able to define a subgroup within schizophrenia using a central biological parameter is a pivotal step towards understanding the biochemistry underlying at least one form of the disorder and may represent a biomarker that can be used in neuroimaging.
Fear memories are acquired through neuronal plasticity, an orchestrated sequence of events regulated at circuit and cellular levels. The conventional model of fear acquisition assumes unimodal (e.g. excitatory or inhibitory) roles of modulatory receptors in controlling neuronal activity and learning. Contrary to this view, we show that protease-activated receptor-1 (PAR1) promotes contrasting neuronal responses depending on the emotional status of an animal by a dynamic shift between distinct G protein coupling partners. In the basolateral amygdala of fear-naïve mice PAR1 couples to Gαq/11 and Gαo proteins, while after fear conditioning coupling to Gαo increases. Concurrently, stimulation of PAR1 before conditioning enhanced, but afterwards it inhibited firing of basal amygdala neurons. An initial impairment of the long-term potentiation (LTP) in PAR1-deficient mice was transformed into an increase in LTP and enhancement of fear after conditioning. These effects correlated with more frequent AMPA receptor-mediated miniature post synaptic events and increased neuronal excitability. Our findings point to experience-specific shifts in PAR1-G protein-coupling in the amygdala as a novel mechanism regulating neuronal excitability and fear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.