Utilizing response times in computerized classification testingSie, H.; Finkelman, M.D.; Riley, B.; Smits, N. Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Abstract A well-known approach in computerized mastery testing is to combine the Sequential Probability Ratio Test (SPRT) stopping rule with item selection to maximize Fisher information at the mastery threshold. This article proposes a new approach in which a time limit is defined for the test and examinees' response times are considered in both item selection and test termination. Item selection is performed by maximizing Fisher information per time unit, rather than Fisher information itself. The test is terminated once the SPRT makes a classification decision, the time limit is exceeded, or there is no remaining item that has a high enough probability of being answered before the time limit. In a simulation study, the new procedure showed a substantial reduction in average testing time while slightly improving classification accuracy compared with the original method. In addition, the new procedure reduced the percentage of examinees who exceeded the time limit.
This article reviews the software package SimuMCAT that simulates unidimensional and multidimensional computerized adaptive testing with various types of items (dichotomous/polytomous) and loading structures (simple-/complex-structured). In addition, the software allows users to choose from five different item selection procedures, two stopping rules for variablelength tests, as well as test constraints to satisfy test blueprint and limit item exposure.
A well-known stopping rule in adaptive mastery testing is to terminate the assessment once the examinee's ability confidence interval lies entirely above or below the cut-off score. This article proposes new procedures that seek to improve such a variable-length stopping rule by coupling it with curtailment and stochastic curtailment. Under the new procedures, test termination can occur earlier if the probability is high enough that the current classification decision remains the same should the test continue. Computation of this probability utilizes normality of an asymptotically equivalent version of the maximum likelihood ability estimate. In two simulation sets, the new procedures showed a substantial reduction in average test length while maintaining similar classification accuracy to the original method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.