Nowadays, many researches have been conducted on smart home. Smart home control system (SHCS) can be integrated into an existing home appliances to reduce the need for human intervention, increase security and energy efficiency. We have proposed a smart home system using internet of things and four types of sensors, including PIR, temperature, ultrasonic, and smoke gas sensor for automatic environmental control and intrustion detection. In this paper, the performance of the previously developed prototype of smart home system will be evaluated. First, experiments on various sensors will be conducted. Next, the communicaton channel using wireless and Ethernet modules will be discussed. Moreover, the overall SHCS will be evaluated in terms of hardware and software performance. Additionaly, solar charger enhances the availability of our prototype system. Results showed the effectiveness of our proposed smart home system in the prototype and real life experiments.
<em><span lang="EN-AU">Smart home control system can be integrated into an existing home appliances to reduce the need for human intervention, increase security and energy efficiency. However, it is still an open problem due to difficulties such as network distance, signal interference, not user friendly, increased cost and power consumption. This paper reviews various topics on smart home technologies including control system, smart home network, smart home appliance and sensor technologies for smart home. In this research, the proposed prototype of home automation allows users to remotely switch on or off any household appliance based on Internet of Things (IoT) with the enhancement of solar charger. The smartphone and/or tablet replaces the manual use of personal computer without the need for high additional cost. This prototype uses four types of sensors i.e. PIR sensor, temperature sensor, ultrasonic sensor and smoke gas sensor for automatic environmental control and intrusion detection.</span></em>
Recently, there is increasing public awareness of the real time air quality due to air pollution can cause severe effects to human health and environments. The Air Pollutant Index (API) in Malaysia is measured by Department of Environment (DOE) using stationary and expensive monitoring station called Continuous Air Quality Monitoring stations (CAQMs) that are only placed in areas that have high population densities and high industrial activities. Moreover, Malaysia did not include particulate matter with the size of less than 2.5μm (PM2.5) in the API measurement system. In this paper, we present a cost effective and portable air quality measurement system using Arduino Uno microcontroller and four low cost sensors. This device allows people to measure API in any place they want. It is capable to measure the concentration of carbon monoxide (CO), ground level ozone (O3) and particulate matters (PM10 & PM2.5) in the air and convert the readings to API value. This system has been tested by comparing the API measured from this device to the current API measured by DOE at several locations. Based on the results from the experiment, this air quality measurement system is proved to be reliable and efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.