Seven autosomal recessive genes associated with juvenile and young-onset Levodopa-responsive parkinsonism have been identified. Mutations in PRKN, DJ-1, and PINK1 are associated with a rather pure parkinsonian phenotype, and have a more benign course with sustained treatment response and absence of dementia. On the other hand, Kufor-Rakeb syndrome has additional signs, which distinguish it clearly from Parkinson’s disease including supranu-clear vertical gaze palsy, myoclonic jerks, pyramidal signs, and cognitive impairment. Neurodegeneration with brain iron accumulation type I (Hallervorden-Spatz syndrome) due to mutations in PANK2 gene may share similar features with Kufor-Rakeb syndrome. Mutations in three other genes, PLA2G6 (PARK14), FBXO7 (PARK15), and Spatacsin (SPG11) also produce clinical similar phenotypes in that they presented with rapidly progressive parkinsonism, initially responsive to Levodopa treatment but later, developed additional features including cognitive decline and loss of Levodopa responsiveness. Here, using homozygosity mapping and sequence analysis in families with complex parkinsonisms, we identified genetic defects in the ATP13A2 (1 family), PLA2G6 (1 family) FBXO7 (2 families), and SPG11 (1 family). The genetic heterogeneity was surprising given their initially common clinical features. On careful review, we found the FBXO7 cases to have a phenotype more similar to PRKN gene associated parkinsonism. The ATP13A2 and PLA2G6 cases were more seriously disabled with additional swallowing problems, dystonic features, severe in some, and usually pyramidal involvement including pyramidal weakness. These data suggest that these four genes account for many cases of Levodopa responsive parkinsonism with pyramidal signs cases formerly categorized clinically as pallido-pyramidal syndrome. 3 2010 Movement Disorder Society
Identifying early-detection biomarkers have become an increasingly important approach in the treatment and prevention of Alzheimer's disease (AD). In this study, we investigated the potential of brain-derived neurotrophic factor (BDNF), complement factor H (CFH), tumor necrosis factor-α (TNFα), interleukin 10 (IL-10), and heat shock protein 90 (Hsp90) as serum biomarkers for AD in a cohort of the Turkish population because they have been suggested to be associated with AD. Serum BDNF, CFH, TNFα, IL-10, and Hsp90 levels in three groups of patients, early-onset AD (EOAD; age of onset < 65; n = 22), late-onset AD (LOAD; age of onset > 65; n = 54), and mild cognitive impairment (MCI) (n = 30), were compared with age-matched healthy controls (age < 65, n = 18 and age > 65; n = 32) using ELISA. The serum BDNF levels significantly decreased and TNFα levels significantly increased in the EOAD and LOAD groups compared to the age-matched healthy controls. There was a correlation between serum TNFα and IL-10 levels in the LOAD and healthy control groups. Serum CFH levels in the LOAD and MCI patients were significantly decreased compared with controls. Serum Hsp90 levels in the EOAD, LOAD, and MCI patients were significantly decreased compared with controls. The protein misfolding, the inflammatory response, and decreased neurotrophic factor synthesis are all suggested to be related to AD type brain pathology, and our results indicate these alterations might be traced from serum samples. For accurate early diagnosis of AD, it is important to determine a profile of alterations in multiple biomarkers in large-scale population studies.
Triggering receptor expressed on myeloid cells 2 (TREM2) homozygous mutations cause Nasu-Hakola disease, an early-onset recessive form of dementia preceded by bone cysts and fractures. The same type of mutations has recently been shown to cause frontotemporal dementia (FTD) without the presence of any bone phenotype. Here, we further confirm the association of TREM2 mutations with FTD-like phenotypes by reporting the first compound heterozygous mutation in a Turkish family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.