-Oxfendazole, methyl-5 (6)-phenylsulfinyl-2-benzimidazole carbamate, is a member of the benzimidazole family of anthelmintics. Anthelmintic benzimidazoles are widely used in meat producing animals (cattle, sheep and pigs) for control of endoparasites. The extensive use of veterinary drugs in food-producing animals can cause the presence of small quantities of the drug residues in food. Maximum residue limit or "MRL" means the maximum concentration of residue resulting from the use of a veterinary medicinal product which may be legally permitted recognized as acceptable in food. The FAO/WHO Expert Committee on Food Additives (1999) evaluations of toxicological and residue data, reported that oxfendazole (MRL) has toxicological hazards on human health. The toxicity of oxfendazole (MRL) was tested in male and female mice and their fetuses. Chromosomal aberrations, teratological examination and biochemical analysis were the parameters used in this study. The results show that oxfendazole MRL induced a mutagenic effect in all tested cell types. Also, oxfendazole exhibit embryotoxicity including teratogenicity. The biochemical results show that oxfendazole induced a disturbance in the different biochemical contents of all tested tissues. So, we must increase the attention paid to the potential risk of oxfendazole residues in human beings and should stress the need for careful control to ensure adherence to the prescribed withdrawal time of this drug.anthelmintic / oxfendazole / maximum residue limit / genotoxicity / embryotoxicity / teratogenicity / biochemical changes
The present study aimed at verifying the usefulness of dietary 2.5% bee-pollen (BP) or propolis (PROP) to overcome the genotoxic and endocrine disruptive effects of malathion polluted water in Oreochromis niloticus (O. niloticus). The acute toxicity test was conducted in O. niloticus in various concentrations (0–8 ppm); mortality rate was assessed daily for 96 h. The 96 h-LC50 was 5 ppm and therefore 1/5 of the median lethal concentration (1 ppm) was used for chronic toxicity assessment. In experiment (1), fish (n = 8/group) were kept on a diet (BP/PROP or without additive (control)) and exposed daily to malathion in water at concentration of 5 ppm for 96 h “acute toxicity experiment”. Protective efficiency against the malathion was verified through chromosomal aberrations (CA), micronucleus (MN) and DNA-fragmentation assessment. Survival rate in control, BP and PROP groups was 37.5%, 50.0% and 100.0%, respectively. Fish in BP and PROP groups showed a significant (P < 0.05) reduction in the frequency of CA (57.14% and 40.66%), MN (53.13% and 40.63%) and DNA-fragmentation (53.08% and 30.00%). In experiment (2), fish (10 males and 5 females/group) were kept on a diet with/without BP for 21 days before malathion-exposure in water at concentration of 0 ppm (control) or 1 ppm (Exposed) for further 10 days “chronic toxicity experiment”. BP significantly (P < 0.05) reduced CA (86.33%), MN (82.22%) and DNA-fragmentation (93.11%), prolonged the sperm motility when exposed to 0.01 ppm of pollutant in vitro and increased the estradiol level in females comparing to control. In conclusion, BP can be used as a feed additive for fish prone to be raised in integrated fish farms or cage culture due to its potency to chemo-protect against genotoxicity and sperm-teratogenicity persuaded by malathion-exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.