We present a new strategy to couple, in a non-split fashion, stiff integration schemes with explicit, extended-stability predictor-corrector methods. The approach is illustrated through the construction of a mixed scheme incorporating a stabilized secondorder, Runge-Kutta-Chebyshev method and the CVODE stiff solver. The scheme is first applied to an idealized stiff reaction-diffusion problem that admits an analytical solution. Analysis of the computations reveals that as expected the scheme exhibits a second-order in time convergence, and that, compared to an operator-split construction, time integration errors are substantially reduced. The non-split scheme is then applied to model the transient evolution of a freely-propagating, 1D methaneair flame. A low-mach-number, detailed kinetics, combustion model, discretized in space using fourth-order differences, is used for this purpose. To assess the performance of the scheme, self-convergence tests are conducted, and the results are contrasted with computations performed using a Strang-split construction. Whereas both the split and non-split approaches exhibit second-order in time behavior, it is seen that for the same value of the time step, the non-split approach exhibits significantly smaller time integration errors. On the other hand, the results also indicate that the application of the present non-split construction becomes attractive when large integration steps are used, due to numerical overhead.
This work focuses on parameter calibration of a variable-diffusivity fractional diffusion model. A random, spatially-varying diffusivity field with log-normal distribution is considered. The variance and correlation length of the diffusivity field are considered uncertain parameters, and the order of the fractional sub-diffusion operator is also taken uncertain and uniformly distributed in the range
(
0
,
1
)
. A Karhunen-Loève (KL) decomposition of the random diffusivity field is used, leading to a stochastic problem defined in terms of a finite number of canonical random variables. Polynomial chaos (PC) techniques are used to express the dependence of the stochastic solution on these random variables. A non-intrusive methodology is used, and a deterministic finite-difference solver of the fractional diffusion model is utilized for this purpose. The PC surrogates are first used to assess the sensitivity of quantities of interest (QoIs) to uncertain inputs and to examine their statistics. In particular, the analysis indicates that the fractional order has a dominant effect on the variance of the QoIs considered, followed by the leading KL modes. The PC surrogates are further exploited to calibrate the uncertain parameters using a Bayesian methodology. Different setups are considered, including distributed and localized forcing functions and data consisting of either noisy observations of the solution or its first moments. In the broad range of parameters addressed, the analysis shows that the uncertain parameters having a significant impact on the variance of the solution can be reliably inferred, even from limited observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.