In this study, the effects of improvement methods on the mechanical and thermal properties of textile fiber reinforced (T-FRP) composites were investigated. Five different chemical methods namely, silane treatment, alkaline treatment, alkali–silane treatment, maleic anhydride, and alkali–maleic anhydride coupling agents were applied to evaluate the suitable process parameters (concentration, soaking time, ratio by weight) for the enhanced properties of T-FRP composites. Tensile, three-point flexural and impact tests were performed on both untreated and treated composites for comparison purpose. Treated and untreated T-FRP composites were characterized using scanning electron microscopy, differential scanning calorimetry, and Fourier-transform infrared spectroscopy to evaluate thermomechanical properties of composites. Results show that a significant improvement up to 60–70% can be seen on the mechanical properties of T-FRP composites via improving the interfacial adhesion and compatibility between fiber and matrix.
In this study, weathering effect on untreated textile fiber-reinforced polymer composites and the effect of different chemical treatments for better interfacial adhesion on the outdoor performance were investigated. Degradation of physical, mechanical, and chemical properties of textile fiber-reinforced polymer composites was evaluated through common chemical treatments such as maleated coupling, alkaline treatment, silane treatment, and alkali–silane treatment. Untreated and chemically treated textile fiber-reinforced polymer composites were subjected to water uptake and UV exposure up to 1000 h. Tensile and impact properties were mechanically examined, and the changes on the physical properties due to water uptake, swelling, and color change were investigated. In addition, Fourier transform infrared spectrum analysis was performed in order to evaluate the chemical changes after exposure.
In this work, various stabilizers have been introduced to prevent or delay degradation due to ultraviolet (UV) light exposure to prolong the service life of cotton fiber-reinforced composites. The effect of various additives like hindered amine light stabilizer, UV absorber (UVA), and antioxidant as photostabilizers of CF/low-density polyethylene (CF/LDPE) composites was compared. We showed how they influence to delay or eliminate the photodegradation of CF/LDPE subjected accelerated weathering. Surface analysis was performed by Fourier transform infrared spectroscopy and color measurements. The results showed us the insight of the photodegradation mechanism of weathered CF/LDPE composites undergoing photooxidative reactions which causes a loss surface quality such as micro-cracking and color change. Among the stabilizers, UVA was found to be the most effective to delay some color changes in long term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.