The production, testing, and processing of signals without any interpretation is a crucial task with time scale periods in today's biological applications. As a result, the proposed work attempts to use a deep learning model to handle difficulties that arise during the processing stage of biomedical information. Deep Conviction Systems (DCS) are employed at the integration step for this procedure, which uses classification processes with a large number of characteristics. In addition, a novel system model for analyzing the behavior of biomedical signals has been developed, complete with an output tracking mechanism that delivers transceiver results in a low-power implementation approach. Because low-power transceivers are integrated, the cost of implementation for designated output units will be decreased. To prove the effectiveness of DCS feasibility, convergence and robustness characteristics are observed by incorporating an interface system that is processed with a deep learning toolbox. They compared test results using DCS to prove that all experimental scenarios prove to be much more effective for about 79 percent for variations with time periods.
High security for physical items such as intelligent machinery and residential appliances is provided via the Internet of Things (IoT). The physical objects are given a distinct online address known as the Internet Protocol to communicate with the network’s external foreign entities through the Internet (IP). IoT devices are in danger of security issues due to the surge in hacker attacks during Internet data exchange. If such strong attacks are to create a reliable security system, attack detection is essential. Attacks and abnormalities such as user-to-root (U2R), denial-of-service, and data-type probing could have an impact on an IoT system. This article examines various performance-based AI models to predict attacks and problems with IoT devices with accuracy. Particle Swarm Optimization (PSO), genetic algorithms, and ant colony optimization were used to demonstrate the effectiveness of the suggested technique concerning four different parameters. The results of the proposed method employing PSO outperformed those of the existing systems by roughly 73 percent.
The majority of the current-generation individuals all around the world are dealing with a variety of health-related issues. The most common cause of health problems has been found as depression, which is caused by intellectual difficulties. However, most people are unable to recognize such occurrences in them, and no procedures for discriminating them from normal people have been created so far. Even some advanced technologies do not support distinct classes of individuals as language writing skills vary greatly across numerous places, making the central operations cumbersome. As a result, the primary goal of the proposed research is to create a unique model that can detect a variety of diseases in humans, thereby averting a high level of depression. A machine learning method known as the Convolutional Neural Network (CNN) model has been included into this evolutionary process for extracting numerous features in three distinct units. The CNN also detects early-stage problems since it accepts input in the form of writing and sketching, both of which are turned to images. Furthermore, with this sort of image emotion analysis, ordinary reactions may be easily differentiated, resulting in more accurate prediction results. The characteristics such as reference line, tilt, length, edge, constraint, alignment, separation, and sectors are analyzed to test the usefulness of CNN for recognizing abnormalities, and the extracted features provide an enhanced value of around 74%higher than the conventional models.
Cloud services are a popular concept used to describe how internet-based services are delivered and maintained. The computer technology environment is being restructured with respect to information preservation. Data protection is of critical importance when storing huge volumes of information. In today’s cyber world, an intrusion is a significant security problem. Services, information, and services are all vulnerable to attack in the cloud due to its distributed structure of the cloud. Inappropriate behavior in the connection and in the host is detected using intrusion detection systems (IDS) in the cloud. DDoS attacks are difficult to protect against since they produce massive volumes of harmful information on the network. This assault forces the cloud services to become unavailable to target consumers, which depletes computer resources and leaves the provider exposed to massive financial and reputational losses. Cyber-analyst data mining techniques may assist in intrusion detection. Machine learning techniques are used to create many strategies. Attribute selection techniques are also vital in keeping the dataset’s dimensionality low. In this study, one method is provided, and the dataset is taken from the NSL-KDD dataset. In the first strategy, a filtering method called learning vector quantization (LVQ) is used, and in the second strategy, a dimensionality-simplifying method called PCA. The selected attributes from each technique are used for categorization before being tested against a DoS attack. This recent study shows that an LVQ-based SVM performs better than the competition in detecting threats.
With the increasing dynamics of the environment, the organisational innovation of high-end equipment manufacturing (HEM) enterprises has attracted more attention. This paper introduces a radial basis function (RBF) neural network to establish a model of the effect of organisational innovation on organisational performance (OP). Organisational innovation includes five dimensions: strategic innovation, structural innovation, cultural innovation, institutional innovation and process innovation. Through the modelling results, we know that all dimensions of organisational innovation have an effect on performance. According to the degree of impact, they are strategic innovation, structural innovation, process innovation, cultural innovation and institutional innovation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.