An organized knowledge structure or knowledge base plays a vital role in retaining knowledge where data are processed and organized so that machines can understand. Instructive text (iText) consists of a set of instructions to accomplish a task or operation. Hence, iText includes a group of texts having a title or name of the task or operation and step-by-step instructions on how to accomplish the task. In the case of iText, storing only entities and their relationships with other entities does not always provide a solution for capturing knowledge from iTexts as it consists of parameters and attributes of different entities and their action based on different operations or procedures and the values differ for every individual operation or procedure for the same entity. There is a research gap in iTexts that created limitations to learn about different operations, capture human experience and dynamically update knowledge for every individual operation or instruction. This research presents a knowledge base for capturing and retaining knowledge from iTexts existing in operational documents. From each iTexts, small pieces of knowledge are extracted and represented as nodes linked to one another in the form of a knowledge network called the human experience semantic network (HESN). HESN is the crucial component of our proposed knowledge base. The knowledge base also consists of domain knowledge having different classified terms and key phrases of the specific domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.