Structural health monitoring (SHM) is crucial for ensuring operational safety in applications like pipelines, tanks, aircraft, ships, and vehicles. Traditional embedded sensors have limitations due to expense and potential structural damage. A novel technology using radio frequency identification devices (RFID) offers wireless transmission of highly sensitive strain measurement data. The system features a thin, flexible sensor based on an inductance‐capacitance (LC) circuit with a parallel‐plate capacitance sensing unit. By incorporating tailored cracks in the capacitor electrodes, the sensor’s capacitor electrodes become highly piezoresistive, modifying electromagnetic wave penetration. This unconventional change in capacitance shifts the resonance frequency, resulting in a wireless strain sensor with a gauge factor of 50 for strains under 1%. The frequency shift is passively detected through an external readout system using simple frequency sweeping. This wire‐free, power‐free design allows easy integration into composites without compromising structural integrity. Experimental results demonstrate the cracked wireless strain sensor's ability to detect small strains within composites. This technology offers a cost‐effective, non‐destructive solution for accurate structural health monitoring.
This paper presents a strategy towards achieving thermoplastic adhesive tapes with high toughness by microstructuring conventional tapes using tailored defects. Toughened tape was manufactured using two layers of a conventional tape where the bondline between the two adhesive layers was microstructured by embedding tailored defects with specific size and gap between them using PTFE film. Mode I toughness of the toughened tape was characterized experimentally. A high-fidelity finite element model was implemented to describe the toughening mechanisms using double cantilever beam simulations and end notch flexural tests. The model considers for the plasticity of the adhesive layer, the decohesion at the adherend–adhesive and adhesive–adhesive interfaces and progressive damage inside the adhesive layer. The adhesive–adhesive interface with the tailored defects inside the adhesive layer enables crack migration between adherend–adhesive interfaces, crack propagation at adhesive–adhesive interface, backward crack propagation under the defect, and plastic deformation of the adhesive ligament. The maximum toughness improvement of the tape with tailored defects of equal width and gap between two successive defects of 2 mm reached 278% and 147% for mode I and II, respectively, compared to conventional tape.
The use of composite joints has been increased in recent years in structural applications such as aircraft, civil engineering structure, ship structure, wind energy sector, and automotive industry. In this paper, the behaviour of composite bolted connection joints under out of plane loading is investigated. A parametric study was conducted to study the joint stiffness variation with various geometric parameters, which include the edge distance, bolt diameter, plate width, and the laminate stacking sequence. The experimental work was conducted on GFRP tension clips (L-angle) joint specimens manufactured by the vacuum infusion technique. In the present work, two types of laminates were used, unidirectional laminates [0°]5 with an areal density of 1050 gm/m2, triaxial laminates [−45°/+45°/0°]5 with an areal density of 1200 g/m2. A 3D finite element (FE) model was developed to study the effect of joint parameters on its stiffness. Finite element models were constructed, and the experimental results were used to validate the finite element models. The analysis concluded that the failure load increases when the edge distance to bolt diameter ratio (E/D) increases and the triaxial stacking sequence is better than unidirectional. The (E/D) ratio, the (W/D) ratio and stacking sequence were found to be very significant parameters.
Additive manufacturing (AM) has drawn tremendous interest in engineering applications because it offers almost unlimited possibilities of innovative structural design to save weight and optimize performance. However, fatigue properties are one of the limiting factors for structural applications of AM materials. The recently developed Tanaka–Mura–Wu (TMW) model is modified to include the microstructure and surface roughness factors, in addition to the material’s elastic modulus, surface energy and Burgers vector, to predict the fatigue curves as functions of stress or plastic strain for several typical AM materials as well as their conventional (wrought) counterpart. Furthermore, with statistical characterization of the microstructural effect, the model can be established to evaluate fatigue design allowables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.