The gastrointestinal tract is considered as one of the main target organs affected by heat stress. Phytogenic feed additives containing phenolics and flavonoids can improve the resistance of broilers to heat stress. This study was conducted to investigate the effects of dietary supplementation with enzymatically treated Artemisia annua (EA) on growth performance, intestinal morphology, digestive enzyme activities, immunity and antioxidant capacity of broilers challenged with heat stress. One hundred and forty-four 21-day-old male Arbor Acres broilers were randomly distributed into 3 treatments: 1) non-challenged control (CON); 2) heat-stress-challenged control (HS); and 3) heat-stress-challenged group + 1 g EA/kg diet (HS-EA). From 22 to 41 d, broilers in the CON group were housed at 22 ± 1°C, the HS and HS-EA groups, in which broilers were raised at 34 ± 1°C for 8 h (0900-1700 h) and the temperature for the rest time was the same as that of the CON group. The EA supplementation alleviated the compromised body weight gain and intestinal morphology impairment caused by heat stress challenge (P < 0.05). The EA attenuated heat-stress-induced decreased intestinal lipase, trypsin and total superoxide dismutase activities, and reduced intestinal secretory immunoglobulin A (SIgA) and IgG concentrations (P < 0.05). The EA inclusion prevented the elevation of intestinal malondialdehyde content and reduction of intestinal glutathione concentration induced by heat stress challenge (P < 0.05). The intestinal mRNA abundances of nuclear factor erythroid 2-related factor 2, heme oxygenase 1, glutathione peroxidase, gamma-glutamyl cysteine ligase larger catalytic subunit and gamma-glutamyl cysteine ligase smaller modulator subunit in heat-stressed broilers were increased in response to dietary EA treatment (P < 0.05). In conclusion, dietary supplementation of 1 g/kg EA could alleviate heat-stress-induced compromised growth performance and intestinal damage of broilers.
The effects of sodium selenite (SS) and selenium yeast (SY) alone and in combination (MS) on the selenium (Se) content, antioxidant enzyme activities (AEA), total antioxidant capacity (TAC), and oxidative stability of chicken breast meat were investigated. The results showed that the highest (p < 0.05) glutathione peroxidase (GSH-Px) activity was found in the SS-supplemented chicken breast meat; however, SY and MS treatments significantly increased (p < 0.05) the Se content and the activities of catalase (CAT), total superoxide dismutase (T-SOD), and TAC, but decreased (p < 0.05) the malondialdehyde (MDA) content at 42 days of age. Twelve days of storage at 4 °C decreased (p < 0.05) the activity of the GSH-Px, but CAT, T-SOD, and TAC remained stable. SY decreased the lipid oxidation more effectively in chicken breast meat. It was concluded that SY and MS are more effective than SS in increasing the AEA, TAC, and oxidative stability of chicken breast meat.
Limonoids have been shown to inhibit the growth of estrogen receptor-negative and -positive human breast cancer cells in culture. The primary objective of this study was to test the antiproliferative activity of limonoids (obacunone 17 beta-D-glucopyranoside, nomilinic acid 17 beta-D-glucopyranoside, limonin, nomilin, and a limonoid glucoside mixture), found in high concentrations in mandarin (Citrus reticulata Blanco), against a series of human cancer cell lines. The human cancer cell lines included leukemia (HL-60), ovary (SKOV-3), cervix (HeLa), stomach (NCI-SNU-1), liver (Hep G2), and breast (MCF-7). The growth-inhibitory effects of the four limonoids and the limonoid glucoside mixture against MCF-7 cells were significant, and the antiproliferative activity of the different citrus limonoids was also dose and time dependent. No significant effects were observed on growth of the other cancer cell lines treated with the four individual limonoids at 100 micrograms/ml. At 100 micrograms/ml, the limonoid glucoside mixture demonstrated a partial inhibitory effect on SKOV-3 cancer cells. With use of flow cytometry, it was found that all the limonoid samples could induce apoptosis in MCF-7 cells at relatively high concentrations (100 micrograms/ml). Considering the high concentration needed to induce apoptosis, it is unlikely that this is the primary mechanism of action for the cytotoxic effects seen with limonoids in this study. Further work is needed in this area to establish the mechanism of action of citrus limonoids on human breast cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.