The aim of this article is to study the existence of at least one unbounded nondecreasing sequence of nonnegative eigenvalues (λk)k≥1 for a class of elliptic Navier boundary value problems involving the degenerate p(·)-biharmonic operator with q(x)-Hardy inequality by using the variational technique based on the Ljusternik-Schnirelmann theory on C1-manifolds and the theory of the variable exponent Lebesgue spaces. Also, we obtain the positivity of the infimum eigenvalue for the problem.
This paper deals with the existence and multiplicity of solutions for a class of quasilinear problems involving \(p(x)\)-Laplace type equation, namely $$\left\{\begin{array}{lll}-\mathrm{div}\, (a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u)= \lambda f(x,u)&\text{in}&\Omega,\\n\cdot a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u +b(x)|u|^{p(x)-2}u=g(x,u) &\text{on}&\partial\Omega.\end{array}\right.$$ Our technical approach is based on variational methods, especially, the mountain pass theorem and the symmetric mountain pass theorem.
In this paper, we study the existence and multiplicity of solutions for Dirichlet singular elliptic problems involving the $p(x)$-Laplace equation with critical growth. The technical approach is mainly based on the variational method combined with the genus theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.