Survival data with a multi-state structure are frequently observed in follow-up studies. An analytic approach based on a multi-state model (MSM) should be used in longitudinal health studies in which a patient experiences a sequence of clinical progression events. One main objective in the MSM framework is variable selection, where attempts are made to identify the risk factors associated with the transition hazard rates or probabilities of disease progression. The usual variable selection methods, including stepwise and penalized methods, do not provide information about the importance of variables. In this context, we present a two-step algorithm to evaluate the importance of variables for multi-state data. Three different machine learning approaches (random forest, gradient boosting, and neural network) as the most widely used methods are considered to estimate the variable importance in order to identify the factors affecting disease progression and rank these factors according to their importance. The performance of our proposed methods is validated by simulation and applied to the COVID-19 data set. The results revealed that the proposed two-stage method has promising performance for estimating variable importance.
The interface between computer science and statistics has developed considerably in recent years, with exponential progress in the fields of data analysis, stochastic modeling, machine learning, econometrics, simulation, algorithms, classification, and networks. Innovative discoveries in this field appear every day, opening new scientific horizons for the modern world. This is especially true in the post-2020 period, with the treatment of large volumes of data that feed the daily operations of large corporations, as well as the development of artificial intelligence, including advanced machine learning techniques, particularly "deep learning".The aim of the special issue titled "New Trends in Statistical Computing and Data Science" was to publish the most significant articles in these directions, that is, the current progress of statistical computing and data science. Novelty, high quality, and importance are the triptych of the special issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.