The aim of image retrieval systems is to automatically assess, retrieve and represent relative images‐based user demand. However, the accuracy and speed of image retrieval are still an interesting topic of many researches. In this study, a new method based on sparse representation and iterative discrete wavelet transform has been proposed. To evaluate the applicability of the proposed feature‐based sparse representation for image retrieval technique, the precision at percent recall and average normalised modified retrieval rank are used as quantitative metrics to compare different methods. The experimental results show that the proposed method provides better performance in comparison with other methods.
Since emotion plays an important role in human life, demand and importance of automatic emotion detection have grown with increasing role of human computer interface applications. In this research, the focus is on the emotion detection from the electroencephalogram (EEG) signals. The system derives a mechanism of quantification of basic emotions using. So far, several methods have been reported, which generally use different processing algorithms, evolutionary algorithms, neural networks and classification algorithms. The aim of this paper is to develop a smart method to improve the accuracy of emotion detection by discrete signal processing techniques and applying optimized support vector machine classifier with genetic evolutionary algorithm. The obtained results show that the proposed method provides the accuracy of 93.86% in detection of 4 emotions (happy, sad, exiting and hate) which is higher than state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.