One of the main concerns of power generation systems around the world is power theft. This research proposes a framework that merges clustering and classification together in order to power theft detection. Due to the fact that most datasets do not have abnormal samples or are few, we have added abnormal samples to the original datasets using artificial attacks to create balance in the datasets and increase the correct detection rate. We improved the crow search algorithm (CSA) and used the weight feature of Crows to improve performance of clustering phase. Also, to create balance between diversification and intensification, we calculated the awareness probability parameter (AP) dynamically at iterations of the algorithm. To evaluate the performance, we used the cross validation technique have used the stacking technique in its training phase. The results of extensive experiments on three reference datasets showed high performance to detect power theft. The evaluation results showed that if the data is collected correctly and sufficiently, this framework can effectively detect power theft in any actual power grid. Also, for new attacks, if their patterns can be detected from the data, it is easily possible to implement these types of attacks.
Advanced Metering Infrastructure (AMI) is an essential segment of the smart grids that is responsible for gathering, measuring and analyzing the electricity demand. Energy losses in the electricity distribution and transmission network and electricity theft detection are major challenges of electricity suppliers around the world. The analysis of consumption data related to the customers is one of the essential resources to identify electricity thieves. In this paper, the Crow Search Algorithm (CSA) is improved and the factors weight (𝑤) and awareness probability (𝐴𝑃) are obtained dynamically and used to adjust the parameters 𝐶 and 𝛾 related to the Support Vector Machine (SVM). The results illustrate that the ICSA-SVM framework has acceptable performance and detects fraudulent customers with high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.