In this paper, we present a new Imperialist Competitive Algorithm (ICA) to solve a bi-objective unrelated parallel machine scheduling problem where setup times are sequence dependent. The objectives include mean completion time of jobs and mean squares of deviations from machines workload from their averages. The performance of the proposed ICA (PICA) method is examined using some randomly generated data and they are compared with three alternative methods including particle swarm optimization (PSO), original version of imperialist competitive algorithm (OICA) and genetic algorithm (GA) in terms of the objective function values. The preliminary results indicate that the proposed study outperforms other alternative methods. In addition, while OICA performs the worst as alternative solution strategy, PSO and GA seem to perform better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.