Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. • Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
As world population is growing the need for fresh water is increasing. Many technologies have been investigated for seawater desalination but each one has its own drawbacks. Desalination process with adsorption technology has gained interest in the last few years due to its ability to use waste heat sources leading to minimal energy requirements and reduced CO 2 emissions. This work mathematically investigates the effect of evaporator and condenser temperatures on the adsorption cycle performance for the production of potable water and cooling effect using silica-gel as the adsorbent material. It was found that as condenser temperature decreases, more water is produced and higher specific cooling capacity was achieved. Moreover, as evaporator temperature increases, similar improvements in water production and cooling were achieved. Results showed that for 10 o C condenser water temperature and 30 o C evaporator inlet water temperature, potable water production of 10 m 3 /tonne silica-gel/day and specific cooling capacity (SCC) of 77 Rton/tonne silica-gel were achieved highlighting the potential of this cycle.
Solar energy, amongst all renewable energies, has attracted inexhaustible attention all over the world as a supplier of sustainable energy. The energy requirement of major seawater desalination processes such as multistage flash (MSF), multi-effect distillation (MED) and reverse osmosis (RO) are fulfilled by burning fossil fuels, which impact the environment significantly due to the emission of greenhouse gases. The integration of solar energy systems into seawater desalination processes is an attractive and alternative solution to fossil fuels. This study aims to (i) assess the progress of solar energy systems including concentrated solar power (CSP) and photovoltaic (PV) to power both thermal and membrane seawater desalination processes including MSF, MED, and RO and (ii) evaluate the economic considerations and associated challenges with recommendations for further improvements. Thus, several studies on a different combination of seawater desalination processes of solar energy systems are reviewed and analysed concerning specific energy consumption and freshwater production cost. It is observed that although solar energy systems have the potential of reducing carbon footprint significantly, the cost of water production still favours the use of fossil fuels. Further research and development on solar energy systems are required to make their use in desalination economically viable. Alternatively, the carbon tax on the use of fossil fuels may persuade desalination industries to adopt renewable energy such as solar.
This paper reviews, for the first time, the measurement adsorption characteristics techniques to facilitate optimal testing of the validity of adsorbent materials in adsorption applications. Thermo-physical properties, adsorption characteristics and modelling techniques are presented. The characterisation of material thermo-physical properties includes true and bulk densities, specific heat capacity, surface area, pore volume distribution and thermal conductivity. The adsorption characteristics were categorized into adsorption isotherms and kinetics including experimental and theoretical equations. A range of models used in the simulation of adsorption cooling systems is presented and discussed. The paper highlights the conditions for which each measurement technique is most suitable and the limitations of modelling techniques, which is a vital element in the robust assessment of the performance of adsorption cooling units
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.