Impaired glucose tolerance and overt diabetes mellitus are becoming increasingly common complications of cystic fibrosis (CF), most probably merely as a result of increased life expectancy. In order to understand the pathophysiology of cystic fibrosis-related diabetes (CFRD), knowledge on the possible expression and cell distribution of the cystic fibrosis transmembrane conductance regulator (CFTR) protein within the endocrine pancreas is required. In this report, we establish the first evidence for expression of CFTR protein in rat pancreatic islets by using independent techniques. First reverse transcriptase-polymerase chain reaction (RT-PCR) amplification showed that CFTR mRNA is present in isolated islets of Langerhans. Furthermore, the analysis of flow cytometry-separated islet cells indicated that the level of CFTR transcripts is significantly higher in the non-beta than in beta-cell populations. The expression of CFTR protein in rat islet cells was also demonstrated by Western blotting and the level of expression was also found significantly higher in the non-beta than in beta-cell populations. Last, in situ immunocytochemistry studies with two monoclonal antibodies recognizing different CFTR epitopes indicated that CFTR expression occurs mainly in glucagon-secreting alpha-cells.
The role currently ascribed to the accumulation of L-arginine in the pancreatic islet B-cell as a determinant of its insulinotropic action was reevaluated by comparing the uptake and the metabolic, ionic, electric, and secretory effects of the cationic amino acid with those of its more positively charged methyl ester in rat pancreatic islets. The response to L-arginine methyl ester differed from that evoked by the unesterified amino acid by a lower uptake and oxidation, lack of inhibitory action on D-glucose metabolism, more severe inhibition of the catabolism of endogenous L-glutamine, inhibition of 45Ca net uptake, decrease in both 86Rb outflow from prelabeled islets perifused at normal extracellular Ca2+ concentration and 45Ca efflux from prelabeled islets perifused in the absence of extracellular Ca2+, and delayed and lesser insulinotropic action. These findings reinforce the view that the carrier-mediated entry of L-arginine into the islet B-cells, with resulting depolarization of the plasma membrane, represents the essential mechanism for stimulation of insulin release by this cationic amino acid.
Creatine supplementation may exert beneficial effects on muscle performance and facilitate peripheral glucose disposal in both rats and human subjects. The present study was undertaken to explore the effects of creatine supplementation on the ATP, creatine, phosphocreatine and glycogen content of white and red gastrocnemius and soleus muscles and on blood D-glucose and plasma insulin concentrations before and during an intravenous glucose tolerance test in Goto-Kakizaki rats, a current animal model of inherited type 2 diabetes mellitus. Creatine supplementation increased muscle creatine content, especially in the soleus muscle of young rats (+35.5±15.8%; d.f.=10; p<0.05), and lowered the insulinogenic index, i.e. the paired ratio between plasma insulin and blood D-glucose concentrations. The latter change was mainly attributable to a lowering of plasma insulin concentration. It is proposed, therefore, that creatine supplementation may improve the sensitivity to insulin in extrapancreatic sites in the present animal model of type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.