Background
Human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electrical impulse propagation velocity and immature action potential profiles.
Methods and Results
Here we have identified an optimal extracellular matrix (ECM) for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal ECM combination have impulse propagation velocities ~2X faster than previously reported (43.6±7.0 cm·s−1 n=9) and have mature cardiomyocyte action potential profiles including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s, N=5 monolayers). In addition the optimal ECM promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1 and Connexin43) and myofilament markers (cTroponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of β1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase (FAK) activation prevented structural maturation.
Conclusions
Maturation of human stem cell derived cardiomyocyte monolayers is achieved in a one week period by plating cardiomyocytes on PDMS coverslips rather than on conventional 2D cell culture formats such as glass coverslips or plastic dishes. Activation of integrin signaling and FAK are essential for significant maturation of human cardiac monolayers.
Key Words: plakophilin-2 Ⅲ intercalated disc Ⅲ arrhythmogenic right ventricular cardiomyopathy Ⅲ cardiac desmosomes A high-resolution image of the site of end-end contact between cardiomyocytes reveals an electron-dense organization called "the intercalated disc." Its classic definition involves 3 structures: desmosomes and adherens junctions, providing mechanical coupling; and gap junctions, allowing electric/metabolic synchronization between cells. Recent studies show that other molecules, not directly involved in intercellular coupling, also reside preferentially at the intercalated disc. Among them is Na V 1.5, the major ␣ subunit of the cardiac sodium channel. 1 Here, we ask whether Na v 1.5 and the desmosomal protein plakophilin-2 (PKP2) coexist in the same molecular complex and whether loss of PKP2 expression affects (1) the amplitude and kinetics of the sodium current and (2) action potential propagation in a monolayer of cardiomyocytes. Our data demonstrate a functional crosstalk between a protein defined in the context of intercellular junctions (PKP2) and another protein that is fundamental to the electrical behavior of the single myocyte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.