In this paper, a new method to facilitate the design of Printed Ridge Gap Waveguide (PRGW) structures is introduced. One of the main difficulties in designing such structures is related to their simulation process which is really time and energy-consuming. Therefore, a suitable boundary condition is considered to bring about the primary structure without involving the bed of nails or mushroom unit cells. Using this technique, a wideband PRGW 3 dB hybrid double-box coupler is designed to serve in mm-wave frequencies at a center frequency of 30 GHz, which can be deployed for the next generation of mobile communication. The designed coupler provides a wide matching and isolation bandwidth with low output amplitude imbalance, which is unique in comparison with current couplers. The prototype of the proposed coupler is fabricated and measured where the simulation and measurement results show a good agreement indicating the strength of the proposed method in PRGW structure design as well. The measured results show the couplers achieve better than 10-dB return loss and isolation over the frequency range from 25 to 40 GHz (46% BW) with the power-split unbalance and phase error within ± 1 dB and ± 5°, respectively. In addition, square mushrooms are chosen here to satisfy the high impedance surface. Not only do they bring about larger stop bandwidth, but also their configuration facilitates the arrangement of them around the coupler. The proposed design has superb characteristics such as low profile, low loss, and easy integration with microwave circuits and systems that can be suitable for designing mm-wave beamforming networks.
In this paper, a new method to facilitate the design of Printed Ridge Gap Waveguide (PRGW) structures is introduced. One of the main difficulties in designing such structures is related to their simulation process which is really time and energy-consuming. Therefore, a suitable boundary condition is considered to bring about the primary structure without involving the bed of nails or mushroom unit cells. Using this technique, a wideband PRGW 3dB hybrid double-box coupler is designed to serve in mm-wave frequencies at a center frequency of 30 GHz, which can be deployed for the next generation of mobile communication. The designed coupler provides a wide matching and isolation bandwidth with low output amplitude imbalance, which is unique in comparison with current couplers. The prototype of the proposed coupler is fabricated and measured where the simulation and measurement results show a good agreement indicating the strength of the proposed method in PRGW structure design as well. The measured results show the couplers achieve better than 10-dB return loss and isolation over the frequency range from 25 to 40 GHz (46% BW) with the power-split unbalance and phase error within ±1 dB and ±5 degrees, respectively. In addition, square mushrooms are chosen here to satisfy the high impedance surface. Not only do they bring about larger stop bandwidth, but also their configuration facilitates the arrangement of them around the coupler. The proposed design has superb characteristics such as low profile, low loss, and easy integration with microwave circuits and systems that can be suitable for designing mm-wave beamforming networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.