Bacterial antibiotic resistance is an emerging public health problem worldwide; therefore, new therapeutic strategies are needed. Many studies have described antipsychotic compounds that present antibacterial activity. Hence, the aims of this study were to evaluate the in vitro antibacterial activity of antipsychotics belonging to different chemical families, to assess the influence of their association with lipid nanocapsules (LNCs) on their antimicrobial activity as well as drug release and to study the uptake of LNCs by bacterial cells. Antibacterial activity was evaluated against Gram-positive Staphylococcus aureus and Gram negative Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii by minimum inhibitory concentration (MIC) assay, and the capability of killing tested microorganisms was evaluated by time kill assay. LNCs were prepared by phase inversion method, and the antipsychotic agents were incorporated using pre-loading and post-loading strategies. Only phenothiazines and thioxanthenes showed antibacterial activity, which was independent of antibiotic-resistance patterns. Loading the nanocarriers with the drugs affected the properties of the former, particularly their zeta potential. The release rate depended on the drug and its concentration-a maximum of released drug of less than 40% over 24 hours was observed for promazine. The influence of the drug associations on the antibacterial properties was concentration-dependent since, at low concentrations (high nanocarrier/drug ratio), the activity was lost, probably due to the high affinity of the drug to nanocarriers and slow release rate, whereas at higher concentrations, the activity was well maintained for the majority of the drugs. Chlorpromazine and thioridazine increased the uptake of the LNCs by bacteria compared with blank LNCs, even below the minimum inhibitory concentration.
Development of effective antibacterial agents for the treatment of infections caused by Gram-positive bacteria resistant to existing antibiotics, such as methicillin-resistant Staphylococcus aureus (MRSA), is an area of intensive research. In this work, the antibacterial efficacy of two antimicrobial peptides derived from plectasin, AP114 and AP138, used alone and in combination with monolaurin-lipid nanocapsules (ML-LNCs) was evaluated. Several interesting findings emerged from the present study. First, ML-LNCs and both plectasin derivatives showed potent activity against all 14 tested strains of S. aureus , independent of their resistance phenotype. Both peptides displayed a considerable adsorption (33%–62%) onto ML-LNCs without having an important impact on the particle properties such as size. The combinations of peptide with ML-LNC displayed synergistic effect against S. aureus , as confirmed by two methods: checkerboard and time-kill assays. This synergistic interaction enables a dose reduction and consequently decreases the risk of toxicity and has the potential of minimizing the development of resistance. Together, these results suggest that ML-LNCs loaded with a plectasin derivative may be a very promising drug delivery system for further development as a novel antibacterial agent against S. aureus , including MRSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.