In this work, the phenols removal of phenol from water by raw clay (RCG) and calcined one at 1000 °C (CCG) of Goulmima city (Morocco) was investigated. The kinetics and isotherms experiments were also studied at pH = 4. The results indicated that the phenol adsorption reached equilibrium within 3 h, and the removal of phenol was enhanced at the same temperature by CCG (2.932 mg/g) adsorbent, compared to RCG (1.640 mg/g) due to the removal of organic matter by heat treatment, and an increase in adsorption temperature, indicating the endothermic process. The adsorbents were characterized by means of X-ray fluorescence, FTIR, XRD, B.E.T, and TGA/DTA analysis and showed that the clay consists essentially of silica and alumina. The experimental data were examined by using linear and nonlinear forms of the kinetics and the isotherms models. Based on the errors of the calculated values of R
2
(Coefficient of determination), χ
2
(Chi-square) and standard deviation (Δq (%)), it was found that the nonlinear forms of second-order kinetic model and Freundlich and Redlich-Peterson (R–P) isotherm models are best fit the experimental data for both adsorbents. However, the enthalpy ΔH° is less than 20 kJ/mol and the free energy ΔG° has a negative value, which shows that the adsorption is done physically and spontaneously on heterogeneous sites. The interest of this study is the use of FTIR and XRD to determine the effect of calcination on the phenol adsorption mechanism. However, the analysis of both adsorbents, before and after adsorption of phenol, shows that the adsorption mechanism of phenol is provided by the hydrogen bonding of the water molecules.
Abstract. The region of Meknes suffers from a significant delay in the water sector, including sewage treatment. The Urban waste water in the region originates from various activities; households, industry, agriculture and hospital. These waters are released in to nature without any treatment, which constitutes a serious risk for the environment. The objective of this research is to characterize the physicochemical and bacteriological pollution of the three sewage collectors of the Meknes region (Aïn Choubbik, Oued Ouislane and Aïn Taoujdate). Indeed, the pollution parameters; biological and chemical oxygen demand are abnormally high, which indicates clearly that waste waters is rich of reducing or oxidizing organic materials. Ammonium, nitrogen, phosphorus and heavy metals concentrations exceed the limit values. So these waters are classified as bad or very bad quality. On the one hand, the presence of a large bacterial load indicates fecal contamination. The total coliform, fecal coliform and fecal streptococci levels are high exceeding exceed the values specified the WHO guidelines and the Moroccan standards. This situation is likely to cause serious and irreparable damage to the environment groundwater. To counter this, make the necessary investment in sewage treatment and other remedial measures is key to preventing pollution and its spread.
AbstractThis work intends to apprehend and emphasize the contribution of image-processing techniques and computer vision in the treatment of clay-based material known in Meknes region. One of the various characteristics used to describe clay in a qualitative manner is porosity, as it is considered one of the properties that with “kill or cure” effectiveness. For this purpose, we use scanning electron microscopy images, as they are considered the most powerful tool for characterising the quality of the microscopic pore structure of porous materials. We present various existing methods of segmentation, as we are interested only in pore regions. The results show good matching between physical estimation and Voronoi diagram-based porosity estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.