In this paper, we consider fault-tolerant resolving sets in graphs. We characterize n-vertex graphs with fault-tolerant metric dimension n, n − 1 , and 2, which are the lower and upper extremal cases. Furthermore, in the first part of the paper, a method is presented to locate fault-tolerant resolving sets by using classical resolving sets in graphs. The second part of the paper applies the proposed method to three infinite families of regular graphs and locates certain fault-tolerant resolving sets. By accumulating the obtained results with some known results in the literature, we present certain lower and upper bounds on the fault-tolerant metric dimension of these families of graphs. As a byproduct, it is shown that these families of graphs preserve a constant fault-tolerant resolvability structure.
The robust optimization method has progressively become a research hot spot as a valuable means for dealing with parameter uncertainty in optimization problems. Based on the asymmetric cost consensus model, this paper considers the uncertainties of the experts' unit adjustment costs under the background of group decision making. At the same time, four uncertain level parameters are introduced. For three types of minimum cost consensus models with direction restrictions, including MCCM-DC, -MCCM-DC and threshold-based (TB)-MCCM-DC, the robust cost consensus models corresponding to four types of uncertainty sets (Box set, Ellipsoid set, Polyhedron set and Interval-Polyhedron set) are established. Sensitivity analysis is carried out under different parameter conditions to determine the robustness of the solutions obtained from robust optimization models. The robust optimization models are then compared to the minimum cost models for consensus. The example results show that the Interval-Polyhedron set's robust models have the smallest total costs and strongest robustness. Decision makers can choose the combination of uncertainty sets and uncertain levels according to their risk preferences to minimize the total cost. Finally, in order to reduce the conservatism of the classical robust optimization method, the pricing information of the new product MACUBE 550 is used to build a data-driven robust optimization model. Ellipsoid uncertainty set is proved to better trade-off the average performance and robust performance through different measurement indicators. Therefore, the uncertainty set can be selected according to the needs of the group.
A vertex u ∈ V (G) resolves (distinguish or recognize) two elements (vertices or edges) v, w ∈ E(G) ∪ V (G) if d G (u, v) = d G (u, w). A subset L m of vertices in a connected graph G is called a mixed metric generator for G if every two distinct elements (vertices and edges) of G are resolved by some vertex set of L m. The minimum cardinality of a mixed metric generator for G is called the mixed metric dimension and is denoted by dim m (G). In this paper, we studied the mixed metric dimension for three families of graphs D n , A n , and R n , known from the literature. We proved that, for D n the dim m (D n) = dim e (D n) = dim(D n), when n is even, and for A n the dim m (A n) = dim e (A n), when n is even and odd. The graph R n has mixed metric dimension 5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.