IMPORTANCEThe emergence of the B.1.617.2 (Delta) variant of SARS-CoV-2 has led to increases in both infections and hospitalizations among adolescents. Little is known about the effectiveness of the BNT162b2 vaccine in adolescents in the general population, as opposed to a clinical trial population. OBJECTIVE To estimate the effectiveness of the BNT162b2 vaccine in adolescents aged 12 to 18 years. DESIGN, SETTING, AND PARTICIPANTS This was a matched case-control study among adolescents (aged 12-18 years) who had results from a SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) test. Immunization histories, relevant clinical data, and RT-PCR test results were obtained from the Yale New Haven Health System's medical records between June 1, 2021, and August 15, 2021, when the Delta variant caused 92% of infections in Connecticut. Case participants were defined as adolescents who had a positive test result and an associated medical encounter.Control participants were defined as those who had a negative test result and were matched to a case participant by age, county of residence, and date of testing. EXPOSURES Adolescents were defined as fully immunized if they had received 2 doses of vaccine at least 14 days before focal time. MAIN OUTCOMES AND MEASURESThe primary outcome measured was SARS-CoV-2 infection confirmed by RT-PCR. The vaccine's effectiveness (VE) was estimated using matched odds ratios from conditional logistic regression models. Secondary measures included estimated VE by clinical symptoms, number of vaccine doses received, and elapsed time from immunization.RESULTS A total of 6901 adolescents were tested for SARS-CoV-2. The final sample comprised 186 case participants and 356 matched control participants. The median age was 14 (IQR, 13-16) years, 262 (48%) identified as female, 81 (15%) as Black, 82 (15%) as Hispanic, and 297 (55%) as White.Overall, 134 (25%) were fully immunized (case participants, 10 [5%]; control participants, 124 [35%]).The median time between immunization and the SARS-CoV-2 test was 62 days (range, 17-129 days).Within 4 months of receiving 2 doses, VE against any infection was estimated to be 91% (95% CI, 80%-96%); against asymptomatic infection, 85% (95% CI, 57%-95%). Effectiveness after a single dose was estimated to be 74% (95% CI, 18%-92%). CONCLUSIONS AND RELEVANCEIn this retrospective case-control study of US adolescents, 2 doses of BNT162b2 vaccine appeared to provide excellent protection for at least 4 months after immunization against both symptomatic and asymptomatic SARS-CoV-2 infections.
Rare immune-mediated cardiac tissue inflammation can occur after vaccination, including after SARS-CoV-2 mRNA vaccines. However, the underlying immune cellular and molecular mechanisms driving this pathology remain poorly understood. Here, we investigated a cohort of patients who developed myocarditis and/or pericarditis with elevated troponin, B-type natriuretic peptide, and C-reactive protein levels as well as cardiac imaging abnormalities shortly after SARS-CoV-2 mRNA vaccination. Contrary to early hypotheses, patients did not demonstrate features of hypersensitivity myocarditis, nor did they have exaggerated SARS-CoV-2–specific or neutralizing antibody responses consistent with a hyperimmune humoral mechanism. We additionally found no evidence of cardiac-targeted autoantibodies. Instead, unbiased systematic immune serum profiling revealed elevations in circulating interleukins (IL-1β, IL-1RA, and IL-15), chemokines (CCL4, CXCL1, and CXCL10), and matrix metalloproteases (MMP1, MMP8, MMP9, and TIMP1). Subsequent deep immune profiling using single-cell RNA and repertoire sequencing of peripheral blood mononuclear cells during acute disease revealed expansion of activated CXCR3 + cytotoxic T cells and NK cells, both phenotypically resembling cytokine-driven killer cells. In addition, patients displayed signatures of inflammatory and profibrotic CCR2 + CD163 + monocytes, coupled with elevated serum-soluble CD163, that may be linked to the late gadolinium enhancement on cardiac MRI, which can persist for months after vaccination. Together, our results demonstrate up-regulation in inflammatory cytokines and corresponding lymphocytes with tissue-damaging capabilities, suggesting a cytokine-dependent pathology, which may further be accompanied by myeloid cell–associated cardiac fibrosis. These findings likely rule out some previously proposed mechanisms of mRNA vaccine–-associated myopericarditis and point to new ones with relevance to vaccine development and clinical care.
While considerable attention was placed on SARS-CoV-2 testing and surveillance programs in the K-12 setting, younger age groups in childcare centers were largely overlooked. Childcare facilities are vital to communities, allowing parents/guardians to remain at work and providing safe environments for both children and staff. Therefore, early in the COVID-19 pandemic (October 2020), we established a PCR-based COVID-19 surveillance program in childcare facilities, testing children and staff with the goal of collecting actionable public health data and aiding communities in the progressive resumption of standard operations and ways of life. In this study we describe the development of a weekly saliva testing program and provide early results from our experience implementing this in childcare centers. We enrolled children (aged 6 months to 7 years) and staff at seven childcare facilities and trained participants in saliva collection using video chat technology. Weekly surveys were sent out to assess exposures, symptoms, and vaccination status changes. Participants submitted weekly saliva samples at school. Samples were transported to a partnering clinical laboratory or RT-PCR testing using SalivaDirect and results were uploaded to each participant's online patient portal within 24 h. SARS-CoV-2 screening and routine testing programs have focused less on the childcare population, resulting in knowledge gaps in this critical age group, especially as many are still ineligible for vaccination. SalivaDirect testing for SARS-CoV-2 provides a feasible method of asymptomatic screening and symptomatic testing for children and childcare center staff. Given the relative aversion to nasal swabs in younger age groups, an at-home saliva collection method provides an attractive alternative, especially as a routine surveillance tool. Results can be shared rapidly electronically through participants' private medical chart portals, and video chat technology allows for discussion and instruction between investigators and participants. This study fosters a cooperative partnership with participating childcare centers, parents/guardians, and staff with the goal of mitigating COVID-19 transmission in childcare centers. Age-related challenges in saliva collection can be overcome by working with parents/guardians to conceptualize new collection strategies and by offering parents/guardians continued virtual guidance and support.
BackgroundWhile considerable attention was placed on SARS-CoV-2 testing and surveillance programs in the K-12 setting, younger age groups in childcare centers were largely overlooked. Childcare facilities are vital to communities, allowing parents/guardians to remain at work and providing safe environments for both children and staff. Therefore, early in the COVID-19 pandemic, we established a PCR-based COVID-19 surveillance program in childcare facilities, testing children and staff with the goal of collecting actionable public health data and aiding communities in the progressive resumption of standard operations and ways of life. In this study we describe the development of a weekly saliva testing program and provide early results from our experience implementing this in childcare centers.MethodsWe enrolled children (aged 6 months to 7 years) and staff at 8 childcare facilities and trained participants in saliva collection using video chat technology. Weekly surveys were sent out to assess exposures, symptoms, and vaccination status changes. Participants submitted weekly saliva samples at school. Samples were transported to a partnering clinical laboratory for RT-PCR testing using SalivaDirect and results were uploaded to each participant’s online patient portal within 24 hours.ResultsThis study fostered a cooperative partnership with participating childcare centers, parents/guardians, and staff with the goal of mitigating COVID-19 transmission in childcare centers. Age-related challenges in saliva collection were overcome by working with parents/guardians to conceptualize new collection strategies and by offering parents/guardians continued virtual guidance and support.ConclusionSARS-CoV-2 screening and routine testing programs have focused less on the childcare population, resulting in knowledge gaps in this critical age group, especially as many are still ineligible for vaccination. SalivaDirect testing for SARS-CoV-2 provides a feasible method of asymptomatic screening and symptomatic testing for children and childcare center staff. Given the relative aversion to nasal swabs in the childcare age group, especially as a routine surveillance tool, an at-home saliva collection method provides an attractive alternative. Results can be shared rapidly electronically through participants’ private medical chart portals, and video chat technology allows for discussion and instruction between investigators and participants.
Monoclonal antibodies for COVID-19 are authorized in high-risk patients aged ≥12 years, but evidence in pediatric patients is limited. In our cohort of 142 patients treated at seven pediatric hospitals between 12/1/20 and 7/31/21, 9% developed adverse events, 6% were admitted for COVID-19 within 30 days, and none received ventilatory support or died.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.