This paper focuses on solving the Boolean Satisfiability (SAT) problem using a parallel implementation of the Ant Colony Optimization (ACO) algorithm for execution on the Graphics Processing Unit (GPU) using NVIDIA CUDA (Compute Unified Device Architecture). We propose a new efficient parallel strategy for the ACO algorithm executed entirely on the CUDA architecture, and perform experiments to compare it with the best sequential version exists implemented on CPU with incomplete approaches. We show how SAT problem can benefit from the GPU solutions, leading to significant improvements in speed-up even though keeping the quality of the solution. Our results shows that the new parallel implementation executes up to 21x faster compared to its sequential counterpart.
Hierarchical time series is a set of data sequences organized by aggregation constraints to represent many real-world applications in research and the industry. Forecasting of hierarchical time series is a challenging and time-consuming problem owing to ensuring the forecasting consistency among the hierarchy levels based on their dimensional features. The excellent empirical performance of our Deep Long Short-Term Memory (DLSTM) approach on various forecasting tasks motivated us to extend it to solve the forecasting problem through hierarchical architectures. Toward this target, we develop the DLSTM model in auto-encoder (AE) fashion and take full advantage of the hierarchical architecture for better time series forecasting. DLSTM-AE works as an alternative approach to traditional and machine learning approaches that have been used to manipulate hierarchical forecasting. However, training a DLSTM in hierarchical architectures requires updating the weight vectors for each LSTM cell, which is time-consuming and requires a large amount of data through several dimensions. Transfer learning can mitigate this problem by training first the time series at the bottom level of the hierarchy using the proposed DLSTM-AE approach. Then, we transfer the learned features to perform synchronous training for the time series of the upper levels of the hierarchy. To demonstrate the efficiency of the proposed approach, we compare its performance with existing approaches using two case studies related to the energy and tourism domains. An evaluation of all approaches was based on two criteria, namely, the forecasting accuracy and the ability to produce coherent forecasts through through the hierarchy. In both case studies, the proposed approach attained the highest accuracy results among all counterparts and produced more coherent forecasts.
Given the importance of the Prophet's Hadith for Muslims all over the world, where it is the second source of Islam after the Qur'an and the fundamental resource of legislation in the Islam community. This study is focused on the Classification of hadith automatically into different categories according to its content, based on Hadith text. The objective of this study is to build a classifier model can classify and differentiate hadith categories, to predict its topic like prayer, fasting, and zakat; using data mining and machine learning techniques. In this study, many supervised learning algorithms plus combination methods such as the stacking algorithm was used to improve classification accuracy. The best three classifiers were evaluated mainly: the Decision Tree (DT), Random Forest (RF), and Naïve Bayes (NB), which achieved higher accuracy reached up to 0.965%, 0.956, and 0.951% respectively. Also, Binary (Boolean algebra) and TF-IDF methods as term weighting was applied to determine the frequency of each word in the hadith text, and identify the most significant features in training dataset using Information Gain (IG), and Chi-square (CHI). The experimental results showed that retrain these classifiers after applying IG and CHI as features selection; gave better accuracy compared to the previous results. Additional to, the best classifier gave high accuracy was DT, it has achieved higher accuracy in most test cases whether in the Boolean algebra or TF-IDF because it can deal with missing values and identifying the most essential features from the training dataset, known as features engineering.
Fatty liver disease is considered a critical illness that should be diagnosed and detected at an early stage. In advanced stages, liver cancer or cirrhosis arise, and to identify this disease, radiologists commonly use ultrasound images. However, because of their low quality, radiologists found it challenging to recognize this disease using ultrasonic images. To avoid this problem, a Computer-Aided Diagnosis technique is developed in the current study, using Machine Learning Algorithms and a voting-based classifier to categorize liver tissues as being fatty or normal, based on extracting ultrasound image features and a voting-based classifier. Four main contributions are provided by our developed method: firstly, the classification of liver images is achieved as normal or fatty without a segmentation phase. Secondly, compared to our proposed work, the dataset in previous works was insufficient. A combination of 26 features is the third contribution. Based on the proposed methods, the extracted features are Gray-Level Co-Occurrence Matrix (GLCM) and First-Order Statistics (FOS). The fourth contribution is the voting classifier used to determine the liver tissue type. Several trials have been performed by examining the voting-based classifier and J48 algorithm on a dataset. The obtained TP, TN, FP, and FN were 94.28%, 97.14%, 5.71%, and 2.85%, respectively. The achieved precision, sensitivity, specificity, and F1-score were 94.28%, 97.05%, 94.44%, and 95.64%, respectively. The achieved classification accuracy using a voting-based classifier was 95.71% and in the case of using the J48 algorithm was 93.12%. The proposed work achieved a high performance compared with the research works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.